






gargin. In response to the UV stress, luciferase activity was
increased by over 2-fold in C/EBP��/� and C/EBP�-�uORF
cells, whereas PATF4-Luc expression was sharply decreased in
the wild-type cells (Fig. 8A). There was no difference in the
activity of theATF4promoter in themutant andwild-typeMEF
cells during ER stress. The levels of ATF4 mRNA in the
C/EBP�-�uORF MEF cells were significantly enhanced in
response to UV irradiation, which was similar to the levels
found in the C/EBP��/� cells (Fig. 8B). By comparison, the
wild-type cells showed a sharp reduction in ATF4 transcripts
following UV stress. During ER stress, the C/EBP��/�,
C/EBP�-�uORF, and wild-type cells each showed over a 4-fold
increase in ATF4mRNA levels.
We also measured ATF4 protein in wild-type and C/EBP�-

�uORF cells and found that there was an increase in ATF4
protein following 3 and 6 h of UV irradiation (Fig. 8C). In the
matched wild-type MEF cells, we observed only low levels of
ATF4 expression 3 h after the UV treatment and no ATF4 pro-
tein 6 h after initiating the stress. As expected, LIP was not
detected in the C/EBP�-�uORF cells. Furthermore, CHOP
proteinwas significantly diminished inC/EBP�-�uORF cells in
response to UV irradiation, whereas during ER stress, there
were similar levels of induced CHOP in both the wild-type and
C/EBP�-�uORF cells. This finding suggests that LIP, but not
LAP, can facilitate CHOP function.
Finally, we measured preferential translation of ATF4 in the

wild-type, C/EBP��/�, and C/EBP�-�uORF cells in which
eIF2��P was induced by either UV or ER stress (Fig. 8D). The
ATF4 translational control was determined by transfecting into
these cells a previously described plasmid encoding the
5�-leader of the ATF4mRNA that includes the uORFs between
the constitutive TK promoter and the firefly luciferase reporter
(7). There was a significant increase in the luciferase activity in
each cell line in response to either UV irradiation or thapsi-
gargin (Fig. 8D). This indicates that C/EBP� is not required for
preferential translation ofATF4 in response to eIF2��P, and if
the ATF4 mRNA is available following UV irradiation, there
will be high levels of synthesized ATF4 protein. Taken together
these experiments demonstrate that LIP is critical for repres-
sion of ATF4 transcription in response to UV irradiation. Fur-
thermore, LAP is not required for activation of the ATF4 pro-
moter in response to ER stress.
Loss of C/EBP� Isoform LIP Increases Expression of ATF4

Target Genes—The absence of LIP led to increased ATF4
mRNA and protein levels in both C/EBP��/� and C/EBP�-
�uORF MEF cells in response to UV irradiation. We next
wanted to determine whether expression of key ATF4 target
genes in the ISR also increased with the elevated ATF4 expres-
sion in the LIP-deficient cells. We measured three well charac-
terized ISR genes: ASNS, which catalyzes the conversion of
aspartate to asparagine;CAT-1, an amino acid transporter, and
CHOP, which encodes a bZIP transcription factor that can
facilitate apoptosis (Fig. 9) (9, 10, 33, 46). As illustrated in Fig. 9,

FIGURE 8. Loss of LIP in C/EBP�-�uORF cells alleviates repression of ATF4
transcription. A, wild-type, C/EBP��/�, and C/EBP�-�uORF MEF cells were
transfected with the PATF4-Luc plasmid and treated with either with 1 �M thap-
sigargin (TG) or 40 J/m2 UV-C irradiation (UV) or subjected to no stress treat-
ment (NT). PATF4-Luc expression was measured and is represented in the his-
togram with the non-treated cells indicated as a value of 1. Values were
determined from three independent experiments with the S.D. indicated by
error bars. B, the wild-type (WT), C/EBP��/�, and C/EBP�-�uORF cells were
treated with UV or thapsigargin stress for up to 6 h, and the levels of ATF4
mRNA were determined by qPCR. Mean values are presented in the histo-
grams with the S.D. indicated by error bars. C, alternatively, the levels of the
indicated proteins in the stressed wild-type (WT) and C/EBP�-�uORF (�uORF)
cells were measured by immunoblot analyses. The zero time indicates no
stress treatment. D, levels of ATF4 translational control were measured in
wild-type, C/EBP��/�, and C/EBP�-�uORF cells that were transfected with the

PTK-ATF4-Luc reporter. Following UV or thapsigargin treatment, luciferase
activity was measured and is presented in the histograms relative to no stress
treatment (NT) with a value of 1. The luciferase measurements were from
three independent experiments with the S.D. indicated by error bars.
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A, B, and C, ATF4 was required for full induction of each of
these mRNAs in response to ER stress. Next we measured
ASNS, CAT-1, and CHOP mRNAs in the wild-type,
C/EBP��/�, and C/EBP�-�uORF MEF cells treated with UV
irradiation or thapsigargin. The levels of each of these three
transcripts were not increased in either wild-type or
C/EBP��/� cells when treated with UV irradiation, whereas
ASNS and CAT-1 mRNAs increased significantly by 6 h in the
C/EBP�-�uORF cells (Fig. 9, D and E). Transcription of these
genes was uniformly increased among these MEF cells in
response to ER stress. These results suggest that increased
ATF4 protein levels lead to increased expression of two of its
key target genes. The fact that these genes were induced in
C/EBP�-�uORF cells but not in theC/EBP��/� cells is consist-
entwith reports that LAPheterodimerizeswithATF4 and facil-
itates transcription of ISR promoters, such as ASNS (33, 34).
The levels of CHOPmRNA did not significantly increase in the
C/EBP�-�uORF cells in response toUV irradiation (Fig. 9F). As
will be highlighted further in the “Discussion,” this observation
is consistent with previous reports that, like ATF4, prior treat-
ment with UV irradiation blocks induced CHOP transcription
by other stress treatments that enhance eIF2�P and ATF4
expression (47, 48).

DISCUSSION

This study provides mechanistic insight into how ATF4
expression is repressed in response to UV irradiation despite
induction of eIF2��P. As highlighted in the model in Fig. 10A,
transcription of ATF4 is repressed following UV irradiation,
and therefore, there are low levels of ATF4mRNA available for
translation during eIF2��P (Fig. 1) (25). This differs from envi-
ronmental stresses that increase ATF4 synthesis, such as those
afflicting the ER where there is activation of ATF4 transcrip-
tion, thus further enhancing the levels ofATF4mRNA for pref-
erential translation by eIF2��P. Central to the repression of
ATF4 transcription is the LIP isoform of C/EBP� (Figs. 4, 7, 8,
and 10A). The ATF4 promoter contains elements that bind
C/EBP�, and this association is enhanced following UV irradi-
ation (Figs. 4 and 10A). Sequential 5�-truncations as well as
internal deletions of the ATF4 promoter indicate that
sequences situated between �1000 and �789 bp facilitate
repression of ATF4 transcription in response to the UV stress
(Fig. 2).Within this repressing region of theATF4 promoter are
binding sites for C/EBP�, which encodes three isoforms of the
bZIP transcriptional regulator, LAP, LAP*, and LIP, produced
by differential selection of initiation codons during translation

FIGURE 9. Alleviation of ATF4 repression in C/EBP�-�uORF cells causes increased expression of ATF4 target genes in response to UV irradiation.
Wild-type and ATF4�/� MEF cells were treated with 1 �M thapsigargin for up to 6 h, and the levels of ASNS (A), CAT-1 (B), and CHOP (C) mRNAs were measured
by qPCR. Wild-type, C/EBP��/�, and C/EBP�-�uORF cells were treated with 40 J/m2 UV-C irradiation (UV) or thapsigargin (TG) and cultured for up to 6 h as
indicated. The levels of ASNS (D), CAT-1 (E), and CHOP (F) mRNAs were measured by qPCR. Values are presented relative to the no-treatment controls (0), and the
S.D. for each is indicated by an error bar. * indicates significance with p � 0.05.
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(39, 40). Deletion of C/EBP� also negated the inhibition of
ATF4 transcription followingUV irradiation, turning this stress
condition instead into an inducer of ATF4mRNA and protein
expression (Fig. 3).

The shorter version of C/EBP�, LIP, contains a bZIP domain
that is important for DNA binding but is missing the amino-
terminal activation domain. Hence, LIP is a documented
repressor of transcription (30–32, 45). Our ChIP analysis of the
ATF4promoter indicates thatC/EBP� binds directlywithin the
repressing region with enhanced association following UV
treatment (Fig. 4). Although the ChIP experiments did not dis-
tinguish whether the LIP and LAP versions of C/EBP� associ-
atedwith theATF4 promoter, two lines of evidence support the
idea that LIP represses the transcription of ATF4 (Fig. 10A).
First, expression of LIP, but not LAP, restored repression of
ATF4 transcription inC/EBP��/� cells subjected to UV irradi-
ation (Fig. 7). Second, ATF4 transcription was not repressed
upon UV irradiation in C/EBP�-�uORF cells, which express
the LAP and LAP* isoforms but not LIP (Fig. 8). In fact, UV
stress in the C/EBP�-�uORF cells led to a significant increase
of ATF4 mRNA and protein levels in response to UV
irradiation.
A consequence of reducedATF4 expression duringUV stress

is the loss of activation of its target genes despite robust
eIF2��P and the accompanying repression of global transla-
tion (Fig. 10A) (25). However, increased ATF4 expression was
observed in the C/EBP�-�uORF cells subjected to UV irradia-
tion, which resulted in enhanced transcription of ISR target
genesASNS andCAT-1 (Fig. 9,A–C). Therefore,UV irradiation
can trigger significant activation of the ISR target genes when
ATF4 expression is restored upon eIF2��P.
It is noteworthy that therewas no increase in theATF4 target

gene CHOP in C/EBP�-�uORF cells following UV stress. Pre-
viously, Schmitt-Ney and Habener (47) reported that UV irra-
diation is a potent repressor of CHOP expression, and like
ATF4, prior treatment with UV irradiation blocks induced
CHOP transcription by other stress treatments, such as ER
stress and nutrient deprivation. Central to this repression is the
first exon ofCHOP as inclusion of this region of theCHOP gene
into a reporter containing the CHOP promoter represses tran-
scription in response toUV irradiation (47). This would explain
the absence of induced CHOP transcription in the C/EBP�-
�uORF cells where ATF4 is activated by UV stress; i.e. ATF4
activation of CHOP transcription is blocked by repressing fac-
tors that can function via an exon region of CHOP. Further-
more, this suggests that although LIP is a potent repressor of
ATF4 in response to UV irradiation this isoform of C/EBP�
does not directly contribute to repression of CHOP. It was also
reported that C/EBP� can dimerize with CHOP, which allows
increased stability and nuclear targeting of CHOP (43, 49).
Therefore, C/EBP� can regulate multiple steps in the ISR,
including both regulation of ATF4 transcription and the func-
tion of its downstream effector, CHOP.
Transcriptional Regulation Combined with Translational

Control of ATF4 Allows for Different Patterns of ISR Gene
Expression—Transcriptional regulation of ATF4 provides a
new dimension to the ISR. The half-lives of ATF4 mRNA and
protein are short (25, 50); therefore, the activity of ATF4 is
tightly linked to its synthesis, namely the transcription ofATF4
and its translation with the latter being dictated by the status of
eIF2��P. Activation of ATF4 transcription leads to more
mRNA available for preferential translation during eIF2��P

FIGURE 10. LIP repression of ATF4 transcription reduces levels of ATF4
mRNA available for preferential translation in response to eIF2��P dur-
ing UV stress. A, model for LIP repression of ATF4 expression during UV stress.
In response to UV irradiation, GCN2 phosphorylation of eIF2� lowers the lev-
els of eIF2-GTP, resulting in reduced global translation. Additionally, eIF2��P
leads to preferential translation of genes involved in repair of damaged DNA
and those that thwart apoptosis, although the underlying mechanisms have
not yet been determined (61). UV irradiation triggers repressed transcription
of the ATF4 gene by increased C/EBP� association at the ATF4 promoter
sequences between �1000 and �879 bp. The LIP isoform of C/EBP� is central
for ATF4 repression, and this regulation is suggested to involve LIP engage-
ment with promoter target sequences when LIP is dimerized with other bZIP
proteins. The mechanism by which UV irradiation triggers increased LIP reg-
ulation of the ATF4 promoter is suggested to involve enhanced stabilization
of C/EBP� mRNA. The resulting lowered ATF4 mRNA levels diminish the
amount of transcripts available for preferential translation in response to
eIF2��P. The resulting loss of ATF4 expression during UV stress impedes the
induction of its ISR target genes. B, a combination of transcriptional and trans-
lational control of ATF4 directs the gene expression program of the ISR. The
eIF2 kinase GCN2 is activated by nutritional deprivation or UV irradiation,
whereas PERK is regulated by ER stress. The resulting induced eIF2��P can
lead to preferential translation of ATF4 by a mechanism involving delayed
ribosome reinitiation, which ribosomes to bypass an inhibitory uORF in the
ATF4 mRNA. Activation of ATF4 transcription by many different stresses
enhances the amount of ATF4 mRNA available for translation in response to
eIF2��P. Transcription factors that activate the ATF4 promoter include PDX1
in islet �-cells of the pancreas upon ER stress, NRF2 in response to oxidative
stress, and CLOCK, which facilitates resistance to anticancer agents cisplatin
and etoposide. As a consequence, there will be enhanced levels of ATF4 that
directly activate the transcription of ISR target genes involved in metabolism,
the redox status of cells, and regulation of apoptosis. Examples of target
genes for each ISR category are illustrated. Alternatively, the ATF4 promoter
can be repressed by a different set of stress conditions. The LIP isoform of
C/EBP� directly facilitates repression of ATF4 transcription in response to UV
irradiation. This would result in low levels of ATF4 mRNA available for prefer-
ential translation during UV stress despite high levels of eIF2��P, thus low-
ering the expression of the ATF4 target genes in the ISR. NASH, non-alcoholic
steatohepatitis.
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(Fig. 10B). Alternatively, repression of ATF4 leads to lower
mRNA levels, thus diminishing synthesis of ATF4. In this way,
eIF2�P can repress global protein synthesis, allowing for con-
servation of resources, butATF4 expression and the ISR can be
differentially expressed depending on the nature of the stress
condition. In addition to UV irradiation for which we showed
that LIP represses ATF4 transcription, brain ischemia and
Non-alcoholic steatohepatitis were reported to induce
eIF2��P yet trigger low ATF4 expression (Fig. 10B) (26, 27).
Therefore,ATF4 repression in the ISR is suggested to be impor-
tant among different physiological stresses.
C/EBP� contributes to cell proliferation and differentiation

and cellular stress responses (30–32). During the course of
these processes, the activity of C/EBP� can be regulated atmul-
tiple levels, including transcription, mRNA stability, protein
phosphorylation, and translational control, that can lead to dif-
ferential selection of start codons (30–32, 39, 40, 43, 49, 51–58).
Consistent with these ideas,C/EBP�mRNA is stabilized by UV
irradiation (Fig. 5), and the levels of LIP protein can be tran-
siently increased afterUV irradiation (Figs. 6A and 10A) (43, 49,
51). C/EBP� mRNA was reported to be stabilized by HuR, a
protein that binds to AU-rich elements in the 3�-untranslated
regions of mRNAs, which provides a mechanism for decreased
decay of C/EBP� transcripts in response to selected environ-
mental stresses, such as UV irradiation (54). During the early
phases of ER stress, up to about 3 h of thapsigargin, there is no
comparable increase in LIP levels (Figs. 6 and 10A). This is
consistent with prior studies, which reported no increase or in
some cases a transient decrease in LIP protein levels during the
first few hours of thapsigargin treatment of cultured cells (43,
49). Changes in C/EBP� mRNA levels as well as translational
control and stress signaling are likely to be central to the regu-
lation of LIP repression of its target genes. Additionally, the
availability of certain protein binding partners for the LIP bZIP
transcription factor may be a contributing factor to the LIP
repression of gene transcription.
Multiple Stress Response Pathways Can Contribute to ISR by

Regulating ATF4Transcription—C/EBP� activity was reported
to be regulated by different mitogen-activated protein kinases,
mammalian target of rapamycin (mTOR); and eIF2��P (30, 39,
51, 59, 60). Therefore, a central target for cross-pathway regu-
lation between the ISR and other stress response pathways is
modulation of ATF4 transcription. In this way, eIF2��P and
the ISR are not restricted to commensurateATF4 synthesis, but
rather the levels of ATF4 mRNA subject to preferential trans-
lation can be adjusted to the requirements of the cell for a spe-
cific environmental stress. This finding suggests that eIF2��P
induced by a range of environmental stresses can lead to pref-
erential translation of a differential subset of many different
target genes. In the case of UV stress, there is repressed ATF4
expression, and induced eIF2��P can instead trigger preferen-
tial translation of alternative target mRNAs that facilitate DNA
repair and enhance survival (Fig. 10A) (61). Selection of the
precise target genes that are subject to preferential translation
can be tailored to the individual stress condition, eliciting gene
expression that is optimal for remedying the underlying cell
damage.

Regarding transcriptional activation of ATF4, stresses that
can increase ATF4 mRNA levels include ER stress (6, 29, 62),
such as that induced by thapsigargin, starvation for amino acids
(28), oxidative stress (63, 64), and certain anticancer agents (65,
66) (Fig. 10B). We are just beginning to understand the under-
lying mechanisms by which these stress conditions can induce
ATF4 mRNA. In the case of oxidative stress, the transcription
factor NRF2 was reported to bind to the ATF4 promoter and
enhance its expression, which can serve to alleviate stress dam-
age and facilitate angiogenesis (63, 64). The transcription factor
CLOCK is suggested bind to the ATF4 promoter, resulting in
enhanced ATF4 expression that can provide resistance to the
anticancer drugs cisplatin and etoposide (67) (Fig. 10B). Finally,
PDX1, a pancreas-specific transcription factor, activates the
ATF4 promoter upon ER stress in islet �-cells (68). Together
these findings suggest that many different transcription factors
can bind to the ATF4 promoter and modulate the levels of
ATF4 mRNA. Some of these transcription factors are inhibi-
tors, triggering discordant induction of eIF2��P and ATF4
expression upon selected environmental stresses, whereas oth-
ers are activators, amplifying ATF4 expression in the ISR. Fur-
thermore, there can be tissue-specific regulation of ATF4 dur-
ing certain stress conditions. As a consequence, multiple stress
pathways can control the induction of ATF4 by eIF2��P,
insuring that the levels of ATF4 and its ISR target genes are
tailored for a given stress condition.
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