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Summary

 

We evaluated in vivo interactions between extrinsic (growth factor induced) and intrinsic (ge-
netically determined) effectors of mouse primitive hemopoietic stem cell proliferation and
numbers. Accordingly, stem cell frequency and cell cycle kinetics were assessed in eight strains
of inbred mice using the cobblestone area–forming cell (CAFC) assay. A strong inverse correla-
tion was observed between mouse lifespan and the number of autonomously cycling progeni-
tors (CAFC day 7) in the femur. The population size of primitive stem cells (CAFC day 35)
varied widely (up to sevenfold) among strains, unlike total CAFC day 7 numbers (cycling and
quiescent), which were similar. Administration of the early acting cytokine flt-3 ligand to these
strains resulted in activation of quiescent primitive stem cells exclusively in strains with high
endogenous stem cell numbers (DBA and AKR), but was unrelated to strain-specific progeni-
tor cell cycling. To map loci affecting stem cell frequency, we quantified stem cells in BXD re-
combinant inbred mice (offspring of C57BL/6 and DBA/2). The resulting strain distribution
pattern showed high concordance with a marker that mapped to chromosome 18 (19 cM). Link-
age with this genomic interval was associated with a likelihood of odds score of 3.3, surpassing
the level required for significance. Interestingly, this segment, containing the 

 

EGR-1

 

 gene,
shows synteny with human chromosome 5q, a region strongly associated with various hemato-
logical malignancies. Our findings indicate that a gene mapping to this region is mutated in either
C57BL/6 or DBA/2 (and possibly AKR) mice. These studies in apparently healthy mice may
facilitate the identification of a gene implicated in human 5q-syndromes.

 

M

 

aintenance of stable levels of mature cells in the pe-
ripheral blood is regulated by an array of hemopoi-

etic cytokines. In contrast, it is not clear how the number
of primitive stem cells, from which these mature cells de-
scend, is regulated in the bone marrow. Several observa-
tions in mice suggest that there may be fundamental differ-
ences between the mechanisms that control the frequency
of these primitive cells and those which regulate mature blood
cell numbers. For example, after chemotherapy or irradiation,
blood cell counts may recover to normal values, but stem
cell numbers remain severely reduced for the entire lifespan
of the animal (1). Conversely, the stem cell pool in unma-
nipulated mice continuously expands during its lifetime,
such that old mice have substantially more stem cells than
young mice, although aging has no effect on circulating
blood cell counts (2, 3). Finally, it has been shown by us
and others that various inbred strains of mice show a re-
markable variation in the numbers and cell cycle kinetics of
stem cells, without detectable differences in peripheral blood
cell numbers (2, 4–7). Thus, it seems unlikely that steady
state stem cell frequency is determined by mature blood cell
numbers through a direct feedback mechanism. Rather,
stem cell pool size appears to be governed to a large extent

by cell-intrinsic, genetically determined regulatory mecha-
nisms.

However, recent findings suggest that extrinsic, growth
factor–controlled effects may also affect stem cell kinetics.
In particular, it has been proposed that serum levels of flk-
2/flt-3 ligand (FL)

 

1

 

 may be involved in maintaining stem
cell frequency within its normal range, the breadth of which
may be genetically determined. A wealth of in vitro data
has shown that FL has potent effects on primitive stem cell
proliferation (8–11), and in vivo flk-2/flt-3 knockout mice
show stem cell defects, especially affecting lymphopoiesis
(12). Importantly, several clinical studies now have demon-
strated that FL serum concentrations inversely correlate with
hematopoietic stem/progenitor cell frequency, whereas no
such associations are apparent between FL levels and pe-
ripheral blood cell numbers (13, 14). These studies suggest
that FL may be the first identified humoral regulator of stem
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Abbreviations used in this paper:

 

 CAFC, cobblestone area–forming cell; FL,
flt-3 ligand; HU, hydroxyurea; LRS, likelihood ratio statistic; QTL,
quantitative trait loci; RI, recombinant inbred; SDP, strain distribution
pattern.
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cell frequency, although as yet no study has assessed the di-
rect in vivo effects of FL administration on primitive stem cell
proliferation.

We evaluated the in vivo interaction between growth
factor–induced and genetically determined effects on prim-
itive hemopoietic stem cell proliferation and population size.
To this end stem cell frequency and cycling were quanti-
fied in various strains of unperturbed and FL-treated mice
which had widely disparate lifespans. A relationship was ob-
served among (

 

a

 

) strain-specific mouse lifespan, (

 

b

 

) progen-
itor cell proliferation, and (

 

c

 

) size of the stem cell compart-
ment. Extrinsic stimulation of stem cell cycling by FL was
observed only in strains with large endogenous stem cell
pools but was absent in strains with inherently low stem
cell numbers. To map genetic loci affecting this trait, we
quantified stem cells in BXD recombinant inbred mice,
and identified a single locus which mapped to chromosome
18. Interestingly, this region shows synteny with human
chromosome 5q21-35, deletions of which are strongly as-
sociated with various hematologic malignancies.

 

Materials and Methods

 

Animals.

 

Female mice were purchased from The Jackson
Laboratory (Bar Harbor, ME) at 6–8 wk of age and were housed
under specific pathogen-free conditions in microisolator cages.
Marrow cells from 3 to 5 mice were pooled and used in each
cobblestone area–forming cell (CAFC) assay. The strains used were
(mean mouse lifespan is indicated in parentheses for each strain):
129/SvJ (621 d), A/J (481 d), AKR/J (256 d), BALBc/J (532 d),
C3H/HeJ (400 d), C57BL/6J (653 d), CBA/J (398 d), DBA/2J
(410 d), and the 26 BXD/Ty recombinant inbred strains.

 

FL Administration.

 

Human FLAG-FL was supplied by Immu-
nex Corp. (Seattle, WA). FL was diluted in saline shortly before
each injection and mice were injected subcutaneously with 2.0 

 

m

 

g
FL/100 

 

m

 

l at 11:00 AM, 11:00 PM, and 9:00 AM. 2 h after the
last injection mice were killed and marrow cells were harvested
by repeated flushing of the femora.

 

CAFC Assay.

 

The CAFC assay was performed exactly as de-
scribed (2). In short, bone marrow cells were plated in six limit-
ing dilutions, each dilution threefold apart (8.1 

 

3

 

 10

 

4

 

–0.33 

 

3

 

 10

 

3

 

cells/well) on a preestablished adherent layer of the stromal cell
line FBMD-1 in 96-well plates. Each dilution was plated in 40
replicate wells. At weekly intervals, individual wells were evalu-
ated for the presence of a cobblestone area. Only wells containing
clusters of 

 

>

 

5 cells growing beneath the stroma were scored as
positive. The percentage of CAFC in S-phase was determined us-
ing an in vitro hydroxyurea (HU) suicide technique as previously
described (2). Before the initiation of the CAFC assay, cells were
incubated for 1 h with or without HU (10

 

7

 

 cells in 1 ml, contain-
ing 200 

 

m

 

g/ml HU (Sigma Chemical Co., St. Louis, MO). Cells
were then washed, recounted, and used in the assay.

 

Quantitative Trait Loci (QTL) Analysis.

 

The CAFC day 35 fre-
quency per 10

 

5

 

 marrow cells was quantified for each BXD strain
(3 mice/group). To confirm the reproducibility of these data, se-
lected strains were reanalyzed and second measurements were shown
to be within 10% of the first. These values were then used in the soft-
ware program MapManager QT (b10.1) (K.F. Manley, Buffalo,
NY; reference 15) to conduct a genome-wide search for linked
loci. To establish statistical criteria for linkage (16) a permutation
test was performed (1,000 permutations at 1-cM intervals) (17).

 

Results and Discussion

 

Mouse Lifespan Is Inversely Correlated with Stem Cell Cy-
cling.

 

We have recently used the in vitro CAFC assay
(Fig. 1) in combination with an HU suicide technique to
evaluate the number of stem cells in active cell cycle (2).
CAFC day 7, a population of cells which has been shown
to consist primarily of multipotent progenitors (18–20),
showed a substantial HU kill, whereas primitive CAFC day
35, which contain cells with long-term repopulating ability
(18, 20), were not killed by a 1-h incubation with HU,
demonstrating their proliferative quiescence (2, 20). The
eight strains of mice which were used in this study were
first evaluated for the pool size of cycling CAFC day 7 per
femur during steady state hemopoiesis (Fig. 2). For five
of these strains (CBA, C3H/He, DBA/2, BALB/c, and
C57BL/6) we have previously shown that the percentage
of progenitor cells in the S-phase of the cell cycle is inversely
related to maximal mouse lifespan (2). The inclusion of
three new strains (AKR, A, and 129/Sv) in this study con-
firmed and extended our initial observation. AKR mice
have the shortest lifespan of all inbred mouse strains, and
invariably develop leukemia before they have reached 1 yr
of age (21). Our data show that AKR mice have one of the
largest cycling CAFC day 7 pools of all strains tested,

 

z

 

8,000 CAFC day 7 per femur. In contrast, 129/Sv mice

Figure 1. The hemopoietic stem cell hierarchy as defined by the in
vitro CAFC assay and its relationship with other stem/progenitor cell as-
says. Stem cells of a particular developmental stage form a cobblestone-
like colony beneath a stromal cell layer after a defined period of time.
Colonies that appear early (7 d) after initiation of the culture are gener-
ated by relatively mature progenitor cells, such as CFU-spleen (CFU-S)
days 8 and 9, CFU–granulocyte/erythroid/megakaryocyte/macrophage
(CFU-GEMM), CFU–granulocyte/macrophage (CFU-GM), or burst
forming units–erythroid (BFU-E). Colonies which appear after z14 d in
culture are descending from CFU-S days 12–14 or high proliferative po-
tential–colony forming cells (HPP-CFC). In contrast, colonies which
appear only after 5 wk in culture are correlated with very primitive, long-
term repopulating ability (LTRA) or long-term culture initiating (LTC-
IC) stem cells (18, 19). The frequency of stem cell subsets detected in
vitro decreases exponentially with culturing time, reflecting the hierarchi-
cal structure of the stem cell compartment.
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have a long lifespan, approximately as long as that of
C57BL/6 mice, and we were unable to detect any S-phase
CAFC day 7 in this strain. Strain A mice have a lifespan
which is intermediate between those of 129/Sv and AKR
mice, and correspondingly the pool of cycling progenitors
per femur in these mice was 

 

z

 

4,000, in between the values
obtained for 129/Sv and AKR mice. Although these data
do not imply any causative relationship between lifespan
and hemopoietic progenitor cell cycling, we hypothesize
that other continuously renewing tissues may show a simi-
lar strain distribution pattern (SDP). If that is the case, it is
appealing to argue that lifespan is influenced by systemic
cell proliferation, which would affect cumulative DNA
damage potentially caused by errors during DNA duplica-
tion, reactive oxygen radicals, telomere erosion, etc. It is
noteworthy that caloric restriction, which has long been
known to increase lifespan, is accompanied by a reduced
mitotic index of multiple cell systems (22).

 

Differential Regulation of Endogenous Pool Size of Stem Cell
Subset Compartments.

 

In all eight strains of mice the abso-
lute number of the various CAFC subsets was determined
weekly for five consecutive weeks (Fig. 3). When the fre-
quency of progenitors (CAFC day 7) was assessed, no sig-
nificant differences could be detected between strains, a re-
sult identical to that obtained when blood cell counts or
cells forming colonies in semisolid medium (23) were com-

pared among the strains. All strains had 

 

z

 

2 

 

3

 

 10

 

4

 

 CAFC
day 7/femur. However, significant differences were ob-
served when more primitive subsets were evaluated. Start-
ing at day 14, the variation in cell frequency between
strains increased steadily, indicating a distinct, genetically
determined, control mechanism for primitive stem cells. At
days 28 and 35, two strains (AKR and DBA/2), had signif-
icantly more stem cells than other strains; conversely, three
strains (CBA, BALB/c, and C3H/He), had far fewer stem
cells. CBA, the strain with the smallest stem cell pool, had
fourfold fewer CAFC day 35 than C57BL/6, and eightfold
fewer than AKR. These data suggest that the progenitor
population is most likely linked to peripheral blood cell
counts, which are equal in all strains, but that another
mechanism(s) controls more primitive stem cells.

 

Characterization of the Intrinsic Organization of the Stem Cell
Compartment Reveals Three Distinct Categories.

 

When the re-
lationship between the S-phase fraction of CAFC day 7,
the numbers of the most primitive stem cells per femur
(CAFC day 35), and the mean lifespan of mouse strains was
plotted, a revealing pattern was obtained (Fig. 4). The eight
strains of mice could be categorized into three distinct
classes, hereafter named groups 1, 2, and 3. Group 1 con-
sisted of CBA, C3H/He, and BALB/c, mice which had
low numbers of CAFC day 35 per femur (

 

,

 

150) but con-
comittantly a high number of proliferating CAFC day 7 per
femur (

 

.

 

5,000 for CBA and C3H/He, somewhat lower
for BALB/c). At the other end of the spectrum, AKR and
DBA/2, and to a lesser extent A mice (group 3), had a sim-

Figure 2. Individual mouse lifespan is negative correlated with the
number of cycling CAFC day 7 per femur. The fraction of cells in S-phase
was determined by using an in vitro HU suicide technique. The linear re-
gression equation was: CAFC day 7 cycling 5 13159 2 18.47 3 lifespan,
r2 5 0.66, P ,0.0145.

Figure 3. Different strains of mice have largely varying primitive stem
cell numbers. CAFC subsets were quantified in eight inbred strains of
mice for five consecutive weeks. Each point represents data obtained from
6 to 15 mice in a minimum of two independent experiments. CAFC fre-
quency is shown on a logarithmic scale.
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ilarly high number of proliferating CAFC day 7 (

 

.

 

5,000),
but these strains had a CAFC day 35 compartment which
was far larger (450–550/femur) than the first group. Two
other strains, C57BL/6 and 129/Sv (group 2), had CAFC
day 35 frequencies which were intermediate (

 

z

 

300/femur),
but this was accompanied by a CAFC day 7 pool which
was largely quiescent (

 

,

 

1,000 proliferating cells/femur).
Short-lived strains could thus be divided into two dis-

tinct groups, based upon the frequency of the CAFC day
35; although CBA and C3H/He mice have roughly an
equally short life span as DBA/2 mice, the latter had five-
to sevenfold more stem cells. Long-lived strains (C57BL/6
and 129/Sv) had an intermediate stem cell frequency.

 

Extrinsic Stimulation of Stem Cell Proliferation by FL Is Fully
Determined by Genetic Background.

 

To assess whether the
intrinsically controlled differential composition of the he-

mopoietic stem cell population in the various strains of mice
would affect the responsiveness of progenitors and stem cells
to extrinsic stimuli, representative strains of each of the three
categories were treated with FL in vivo. Fig. 5, 

 

a

 

 and 

 

b

 

,
summarizes the effects of FL treatment on the percentage
of CAFC day 7 and CAFC day 35 in S-phase, respectively.
FL had a potent stimulating effect on progenitor cycling in
C57BL/6 and 129/Sv, the two long-lived strains which
showed scarcely any endogenous proliferation (Fig. 5 

 

a

 

). In
DBA/2 mice a marked FL effect could also be demon-
strated, but the relative increase of the percentage of CAFC
day 7 in S-phase due to FL treatment was less impressive
than in the previous two strains. Finally, no stimulating ef-
fect could be demonstrated in AKR and C3H/He, two
strains that already showed a high, possibly maximal, au-
tonomous cycling activity for this progenitor subset. When
the effect on CAFC day 35 cycling was assessed, striking
strain-specific results were obtained (Fig. 5 

 

b

 

). As expected
from previous work, these cells were normally completely
quiescent (2). The only exception was noted in AKR mice,
in which 

 

z

 

5% of these very primitive stem cells prolifer-
ated autonomously. Interestingly, AKR mice invariably de-
velop leukemia (21) and our data therefore suggest that even
apparently healthy AKR mice may in fact be preleukemic.
Only in AKR and DBA/2 mice did FL result in a substan-
tial percentage (15–20%) of CAFC day 35 entering S-phase.
Cells of C57BL/6 and 129/Sv did not respond to FL, al-
though CAFC day 7 of these strains were highly respon-
sive. Thus, FL activation of primitive stem cells was con-
fined to strains which have a large endogenous stem cell
population (Fig. 4) and occurred irrespective of CAFC day
7 cell cycle kinetics, an outcome with possible clinical ram-
ifications for the use of this cytokine in cancer treatment
and stem cell transplantation protocols. Moreover, our find-
ings have relevance for experimental gene therapy proto-
cols, in which the quiescent nature of long-term repopulat-
ing stem cells is considered a serious obstacle for efficient
gene transfer. We show that FL may be a promising adju-

Figure 4. Inbred strains of mice can be divided into three groups with
respect to the organization of their stem cell compartment: group 1:
CBA, C3H, and BALB/c (high cycling, few stem cells, short lifespan);
group 2: C57BL/6 and 192/Sv (low cycling, intermediate stem cells, long
lifespan); and group 3: DBA and AKR (high cycling, many stem cells,
short lifespan). Left y-axis shows mean lifespan for each strain (d), right
y-axis shows mean number of cycling CAFC day 7 per femur (w).

Figure 5. Strain-specific responses to in
vivo administration of FL. The number of
cycling CAFC day 7 (a) and CAFC day 35
(b) was determined using an in vitro HU
suicide technique. Dark bars represent the
number of CAFC in S-phase in untreated
control animals, while lighter bars show the
cycling activity in FL-treated mice. Note that
no detectable CAFC day 35 cycling could be
demonstrated in any strain before FL ad-
ministration, except AKR. Groups indi-
cated refer to categories as shown in Fig. 4.
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vant in these protocols, but clearly its effectiveness will vary
from donor to donor.

 

Mapping of a Locus Which Regulates the Population Size of
Primitive Stem Cell Compartments.

 

To identify loci affect-
ing the size of the endogenous stem cell pool, we made use
of BXD recombinant inbred (RI) strains of mice derived
from C57BL/6 (a group 2 strain, Fig. 4) and DBA/2 (a
group 3 strain) parental founders. The genome of RI BXD
mice consists of a mosaic of homozygous C57BL/6 and
DBA/2 chromosomal segments. Typing these mice for a
particular phenotype and comparing the obtained SDP with
polymorphic markers previously mapped by others in the
BXD strains may result in a map position for the trait of in-
terest. In the field of hematology this type of approach has
been, for example, successfully employed to characterize
the gene involved in IL-3 nonresponsiveness of A/J mice
(24). To this end, we quantified CAFC day 35 frequency
in all 26 RI strains. DBA parental mice had approximately
threefold higher CAFC day 35 frequencies than C57BL/6

mice, but nearly all of the RI strains had CAFC day 35 fre-
quencies which were between C57BL/6 and DBA/2 val-
ues (Fig. 6 

 

a

 

). Two notable exceptions were RI strain
number 11, which had an unusually high stem cell number,
and RI strain 29, which had a very small stem cell compart-
ment. Our data differ quantitatively and qualitatively from
those reported recently by Muller-Sieburg et al. (7). We
believe that this results from our use of more stringent cri-
teria in the CAFC assay. As has been pointed out by
Ploemacher et al. (25), the CAFC assay will only result in
reproducible and accurate stem cell measurements if (phase
contrast–negative) colonies growing beneath stromal cells
are counted. Phase contrast–positive cells accumulating on
top of the stroma reflect the mature progeny of primitive
cells, and their presence does not indicate a proper cobble-
stone area. In addition, it is likely, given the different cell
cycle status of C57BL/6 and DBA/2 cells, that the half-life
of such phase contrast–positive cells differs markedly from
(BXD-) strain to strain, further confounding an accurate

Figure 6. Analysis of stem cell frequency
in RI strains. (a) Strain distribution pattern
of the CAFC day 35 frequency in all BXD
strains. Parental values are indicated with
the leftmost (C57BL/6) and rightmost
(DBA) bars. Each value is based on the anal-
ysis of pooled marrow cells obtained from
three BXD mice. (b) Likelihood ratio statis-
tic plot showing the results of the interval
mapping on chromosome 18. The threshold
LRS values for suggestive and significant
linkage were 9.9 and 14.7, respectively, and
are indicated. A sharp peak was observed
around D18NcvS22, located z19 cM from
the centromere. The corresponding map
position of orthologous genes in human is
shown at the top of the figure. The region
around D18NcvS22 (11–34 cM) shows syn-
teny with human chromosome 5q21-35.
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stem cell analysis. It should be noted that we used the same
stromal cell line as was tested by Muller-Sieburg, and that
the frequency of C57BL/6 stem cells was very comparable
in both studies.

The SDP obtained after BXD analysis was subsequently
used to search for QTLs using MapManager QT (b10.1)
software (15). Statistical criteria for linkage (16) were estab-
lished by performing a permutation test (1,000 permuta-
tions at 1-cM intervals) (17). Two putative intervals which

could harbor QTLs were detected in a genome-wide search,

 

D18NcvS22

 

 (chromosome 18, at 

 

z

 

19 cM), and 

 

Cyp2d9

 

(chromosome 15, at 

 

z

 

43 cM). The latter had a likelihood
ratio statistic (LRS) value of 7.9 (likelihood of odds 

 

,

 

2.0),
falling short of even the suggestive linkage threshold. The

 

D18NcvS22

 

 interval was associated with an LRS of 15.1
(likelihood of odds 

 

5

 

 3.3), a value surpassing the signifi-
cance level (i.e., genome-wide probability of a type 1 error

 

,

 

0.05). Importantly, neither FL (which maps on chromo-
some 7) nor its receptor flt3 (which maps on chromosome
5) can be involved in this trait. Subsequent interval map-
ping on chromosome 18 resulted in the LRS plot shown in
Fig. 6 

 

b

 

. Interestingly, the region of mouse chromosome 18
to which the trait maps shows synteny with human chro-
mosome 5q (Fig. 7). Deletions in this region are strongly
associated with various hematologic malignancies, most
notably a subset of myelodysplastic syndromes and acute
myeloid leukemias (26). Previous studies in patients have
revealed distinct critical regions which may contain tumor
suppressor genes implicated in 5q-syndromes (Fig. 7). Since
genes located on human 5q21-35 are dispersed over mouse
chromosomes 11, 13, and 18, our mouse data underscore
the possible presence of a critical region involved in human
5q-malignancies around 

 

EGR-1

 

. 

 

IRF-1

 

, shown by Will-
man et al. (27) to be deleted in some 5q-samples, maps to
mouse chromosome 11. The critical region identified by
Boultwood et al., (26, 28) is partly syntenic with a segment
on mouse chromosome 18, but appears to be too telomeric
to be considered as a candidate region for the present QTL.
Fairman et al. (29) have identified a region between 

 

EGR-1

 

and 

 

IL-9

 

. 

 

IL-9

 

 maps to mouse chromosome 13, and thus
cannot be a candidate gene here. In contrast, the region
around and telomeric to 

 

EGR-1

 

 is very likely to contain
the gene which regulates mouse CAFC day 35 frequency.
This region was implicated by Le Beau et al. (30) to be of
critical importance in the ontogeny of 5q-malignancies in
humans. Our findings suggest that the murine homolog of
one of these genes is mutated in either C57BL/6 or DBA/2
(and possibly AKR, another group 3 mouse).

In conclusion, our data demonstrate that hemopoietic stem
cell numbers are under strict genetic control and are inde-
pendent of circulating blood cell counts. Extrinsic stimula-
tion of stem cells with cytokines, a goal of many clinical
endeavors, may be effective but is highly dependent on
these intrinsic determinants. This was recently reiterated in
a study in which the G-CSF–stimulated mobilization po-
tential of various inbred strains of mice was determined (23).
DBA/2 mice mobilized 

 

z

 

10-fold better than C57BL/6 mice
and our data would suggest that this difference is a reflec-
tion of the total stem cell pool in the femur, which is much
larger in DBA/2 mice. A prediction would be that AKR
mice are also efficiently mobilized. Here we report the chro-
mosomal location of one of the genes contributing to these
differences, which should facilitate the identification of an
important stem cell regulatory mechanism, both in mice
and humans.

Figure 7. Genes assigned to human chromosome 5q21-35, and their
map position in mouse. The order of genes was based on various sources
(26, 30, 32). The regions which have been implicated in human 5q asso-
ciated malignancies are indicated, with references. The region which con-
tains the QTL mapped in this study is shown in the last column.
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