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Aging of hematopoietic stem cells: Intrinsic changes or
micro-environmental effects?
Carolien M Woolthuis1, Gerald de Haan2,3 and Gerwin Huls1
During development hematopoietic stem cells (HSCs) expand

in number and persist throughout life by undergoing self-

renewing divisions. Nevertheless, the hematopoietic system

does not escape the negative effects of aging, suggesting that

self-renewal is not complete. A fundamental issue in stem cell

biology relates to such age-dependent loss of stem cell activity.

Both stem cell intrinsic factors and extrinsic factors associated

with an aging micro-environment could contribute to aging of

the hematopoietic system. Recently, changes in the clonal

composition of the HSC compartment during aging have been

put forward as a key factor. Here, we discuss these recent

developments and speculate how they may be of clinical

relevance.
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Introduction
Throughout the lifespan of an organism, hematopoietic

stem cells (HSCs) within the bone marrow are capable of

replenishing all cell types of the blood. This feature

renders the bone marrow one of the most highly self-

renewing tissues of the body. Nevertheless, the hemato-

poietic system does not escape the detrimental effects of

the aging process. These aging effects are clinically

manifested by an increase in the incidence of myelopro-

liferative diseases, including leukemia [1,2], a decline in

adaptive immunity [3–5] and a greater propensity to

anemia [6,7]. Moreover, older patients with acute myeloid

leukemia (AML) show a lower frequency of favorable

core-binding chromosomal abnormalities, a higher inci-

dence of complex aberrant karyotypes and a different
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gene expression pattern compared to young AML

patients [8,9], suggesting differences in underlying

biology in old versus young patients. Alterations in the

hematopoietic system in response to aging have recently

been discussed in some excellent reviews [10�,11,12].

In general, aging is accompanied by a diminished capacity

to adequately maintain tissue homeostasis and to repair

tissues after injury, suggesting an imbalance in cell loss

and renewal. In the hematopoietic system, a reduction in

the repopulating capacity of old murine HSCs versus their

younger counterparts is observed [13–15]. However, it

was also observed that aged bone marrow is still able to

repopulate the blood system after serial transplantations

[16,17] and HSCs seem therefore able to largely over-

come the negative effects of normal aging. Moreover,

bone marrow failure is a rare condition in both rodents and

humans and even among the most elderly rarely

observed.

Since functional hematopoiesis is completely dependent

on a small population of HSCs, age-related changes of the

hematopoietic system must be the result of age-related

alterations in the function of HSCs. As HSCs do not

function in isolation, but rather exert their activity in

the context of supporting stromal elements in the bone

marrow, it is highly likely that both intrinsic and micro-

environmental factors contribute to aging of HSCs. This

review is aimed to highlight recent developments in the

understanding of both intrinsic changes and on the

increasing evidence of micro-environmental effects in

the process of HSC aging. Surprisingly, data on the effects

of aging on human HSCs are rare. Nevertheless, we relate

findings from murine model systems to human biology,

and speculate on their clinical consequences.

Aging of the hematopoietic system
An ever-increasing number of studies using murine

models have investigated the effects of age on the hema-

topoietic system. Collectively, these studies have made it

clear that the hematopoietic system undergoes substan-

tial changes with increasing age. One of the most striking

features is a skewing toward a more myeloid-biased

output. In mice, changes in lineage potential during

aging show a relative decrease in lymphoid output,

whereas the myeloid potential is maintained or even

increased [14,15,18]. These data are in line with an

increasing incidence of myeloid leukemias and a dimin-

ished adaptive immunity in aged humans. However,

studies investigating potential age-associated lineage
www.sciencedirect.com
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skewing in the human hematopoietic system are still

lacking. Another well-documented feature of the aged

hematopoietic system in mice is the relative increase in

phenotypically defined HSCs [13–15,19,20]. This has

recently been confirmed in humans, defining human

HSCs by a CD34+CD38� [21] or a more stringent line-

age�CD34+CD38�CD90+ [10�] phenotype. In mice,

however, this increase in HSCs is accompanied by a

loss of functional activity. Although considerable vari-

ation between mouse strains has become evident, a

decrease in competitive repopulating ability was

observed in old versus young murine HSCs [13–15].

Whether such functional decline in HSC activity is also

present in the human system has still to be elucidated. In

a large cohort of matched unrelated allogeneic stem cell

transplantations young donor age was associated with

better overall survival of the recipient, but no direct

effect of donor age on neutrophil engraftment was seen

[22]. On the other hand, the propensity to anemia that is

often observed in elderly suggests a decrease in func-

tional activity. Detailed studies of individual human

HSCs are needed to draw firm conclusions. Unfortu-

nately, these studies in humans are still limited by sub-

optimal stem cell assays using limiting dilution

experiments, limited data on stringent purification of

human HSCs, and the mere availability of old human

HSCs for research purposes. In many studies human cord

blood samples are used, as these are often readily avail-

able. We would argue that this is a far from optimal cell

source for aging studies. Further, one should realize that

the golden standard for the validation of human stem cell

properties, the xenotransplantation model, also has its

limitations due to species-related differences in biology.

Intrinsic changes of hematopoietic stem cells
during aging
As HSCs reside in the bone marrow in close proximity to

non-hematopoietic cellular elements, it is highly likely

that age-associated alterations in HSCs are due to a

combination of both intrinsic and environmental effects.

However, the majority of data on HSC aging concern

intrinsic changes, often due to the fact that young mice

were used as recipients. A prevailing hypothesis that

aging of an organism is the result of increasing efforts

of cells and tissues to cope with accumulating global

damage also seems to hold true for HSCs. During aging,

tumor suppressor pathways are activated in response to

unavoidable exposure to damaging agents, like reactive

oxygen species. Indirect evidence for the involvement of

DNA repair mechanisms in aging comes from murine

studies. Mice deficient in several genomic maintenance

pathways including nucleotide excision repair, telomere

maintenance, and non-homologous end-joining show

alterations in number and functional decline of HSCs.

Some of the phenotypes are reminiscent of normal aging

[23]. Also, an increase of g-H2AX DNA foci (indicating

DNA damage) in aged wild type HSCs was demonstrated
www.sciencedirect.com
[23]. This age-associated accumulation of DNA damage

was recently also observed in human hematopoietic stem

and progenitor cells [24�]. In addition, it was shown in

other stem cells that tumor suppressor pathways are

activated, including those mediated by p53 and p16

[25,26]. In HSCs, the classical cyclin-dependent kinase

inhibitor p16INK4a increases with age and modulates

specific age-associated HSC functions [27]. At older

age p16INK4a�/� mice had significantly more HSCs, had

more dividing cells, and were better able to reconstitute

an immune system than wild type HSCs from mice of the

same age [27]. The p16INK4a pathway also seems to play a

role in human hematopoietic aging, since an increased

expression of p16INK4A during aging in human healthy

CD34+ hematopoietic cells was demonstrated [8]. Inter-

estingly, an inverse pattern of p16INK4A expression was

shown in patients with AML [8,28], suggesting that

suppression of the (age-associated) p16INK4A pathway

may facilitate leukemogenesis.

As discussed above, skewing in the lineage potential of the

HSC population towards a more myeloid-biased potential

is one of the most prominent features of the aged hema-

topoietic system. Recently, it has become clear that hetero-

geneous HSC populations with different lineage potential

(lymphoid-biased, myeloid-biased, or balanced) co-exist in

the bone marrow and co-ordinately give rise to hematopoi-

esis [29��,30��,31,32]. Studies using extensive single cell

transplantations of highly purified stem cells demonstrated

that the clonal contribution to the different blood cell

lineages varies significantly in young mice, and can be

stably maintained throughout serial passaging, providing

evidence that the pool of HSCs comprises distinct clonal

subtypes with differential lineage and self-renewal poten-

tial [32,33]. The lineage biased HSCs can be purified based

on differential expression of CD150 (Slamf1) [29��].
Within the long-term repopulating lineage�Sca1+c-

kit+Flt3�CD34� HSC compartment cells with distinct

expression of CD150 can be identified: myeloid-biased

HSC are CD150high, whereas HSCs with a balanced lin-

eage output are CD150low. During aging the CD150high

HSC population expands while the CD150low HSC popu-

lation diminishes, suggesting that they are differentially

regulated [29��]. Although these data suggest clonal selec-

tion as the predominant mechanism contributing to aging

of HSCs, they do not exclude the possibility that

deficiencies within defined clonal subtypes also contribute

to age-dependent changes. Indeed, the observation that

the total repopulating potential diminishes with age in both

CD150high and CD150low HSCs suggests that besides

clonal selection, aging of HSCs also occurs [29��]
(Figure 1). The proposed concept of clones with distinct

functional potential has not yet been supported (nor

refuted) by experimental evidence in humans.

An alternative, albeit not mutually exclusive, mechanism

contributing to age-associated changes of the hemato-
Current Opinion in Immunology 2011, 23:512–517
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Figure 1
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With increasing age the clonal composition within the HSC compartment changes. A proportional shift in lineage potential from balanced to myeloid-

biased is observed. Moreover, while there is an increase in HSC number, the per-cell quality of HSCs decreases with age.
poietic system is the occurrence of gradual changes within

all HSCs. From studies investigating B-cell aging it has

become clear that aging affects the hematopoietic system

with considerable inter-individual variation, even in

genetically identical and co-housed mice [34–36]. This

often-overlooked fact strengthens the importance of non-

genetic factors in aging, for example, epigenetic changes.

Indeed, monozygotic twins show remarkable differences

in epigenome at older age [37]. Gene expression profiling

of highly purified long-term HSCs from young and old

mice revealed consistent downregulation of genes med-

iating lymphoid specification and function. In contrast,

genes mediating myeloid specification and function were

upregulated, strongly suggesting that the changes in lin-

eage potential are underwritten by age-dependent

changes in gene expression at the stem cell level [14].

Why and how these gene expression changes are initiated

remains fully unclear. Another study revealed that old

murine HSCs show high-order changes in gene expres-

sion. Groups of genes, or even entire chromosomal

regions, which were normally silenced in young HSCs,

were activated in old HSCs, whereas conversely other loci

were expressed at lower levels than in young cells [13].

Among the genes with reduced expression were those

involved in modulating chromatin, suggesting that epi-

genetic alterations may accumulate in old cells. It is

important to realize that these studies compared large

populations of HSCs derived from old and young mice,
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and did not take into account potential population

dynamics within or between individual mice. Gene

expression profiling studies on human young and old

purified HSCs are still lacking, most likely because of

the difficulties associated with obtaining cells from

healthy old donors.

Micro-environmental effects of the bone
marrow during aging
Besides stem cell intrinsic factors also micro-environmen-

tal (extrinsic) factors might determine the functional

capacity of stem cells in the aging organism. Contribution

of micro-environmental effects is especially reasonable in

the hematopoietic system, in which the dependence of

HSCs on the bone marrow stromal environment (the HSC

niche) is very well documented [38–40]. An early study

using subcutaneous implantation of bones from young or

old mice demonstrated decreased repopulation of young

cells into the old bone grafted onto young mice [41].

Similarly, in vitro long-term bone marrow cultures on

stromal cells derived from either young or old mice have

demonstrated a reduced ability of the old stroma to

support hematopoietic progenitor cells [42]. Using

time-lapse 2-photon microscopy and complex image

analysis algorithms it was shown that aged HSCs and

early progenitors display a higher cell protrusion activity

and are localized more distantly from the endosteum

compared to their young counterparts [43�]. This corre-
www.sciencedirect.com
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Figure 2
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Overview of proposed age-associated micro-environmental (extrinsic) and intrinsic changes of the hematopoietic system: first, increase in the number

of phenotypically defined HSCs; second, more distant localization of HSCs from the endosteum; third, less supportive stroma; fourth, accumulation of

adipocytes in the bone marrow; fifth, different cytokine milieu; sixth, increased DNA-damage; seventh, increased exposure to reactive oxygen species

(ROS); and eighth, changes in gene expression and accumulation of epigenetic alterations.
lated with reduced adhesion to stroma cells as well as

reduced cell polarity upon adhesion of aged HSCs,

suggesting altered niche biology in aging. The reduced

adherence of HSCs with stroma cells is also suggested by

the observation in a murine model that approximately

fivefold more HSCs were mobilized after treatment with

granulocyte growth stimulating factor (G-CSF) [44]. Con-

versely, it has been well documented that old HSCs

display homing deficiencies upon transplantation in old

recipients [45]. Whether these properties of old HSCs are

also present in human has never been studied in detail.

The mechanisms underlying the proportional shift in

lineage potential seen with age are not understood.

One possibility would be a differential response to the

aging cytokine milieu. This hypothesis is supported by

the demonstration that lineage-biased HSC subtypes

respond differently to transforming growth factor b1

(TGF-b1) [30��]. It was shown in vitro as well as in vivo
that TGF-b1 stimulates myeloid-biased HSCs to pro-

liferate while exerting inhibitory effects on lymphoid-

biased HSCs, illustrating the unique responsiveness of

distinct HSC subtypes to a growth factor and providing a

potential mechanism for differential regulation of HSC

subtypes [30��]. It could be speculated that the inflam-

matory setting of an aging environment could be the

setting which causes the increase of the myeloid-biased

HSCs. In line with this hypothesis, might also be the
www.sciencedirect.com
observation of reduced cellularity in the bone marrow of

human elderly [46]. Together with the observations in

murine models that bone marrow adipocytes accumulate

with age [47] and that these adipocytes are negative

regulators of the bone marrow micro-environment [48],

it could be hypothesized that adverse effects of the aged

bone marrow composition impact HSCs.

Analogous to experiments which demonstrated that the

age-related decline in hepatocyte progenitor cell activity

can be modulated by systemic factors that change with

age [49] the heterochronic parabiosis mouse model was

used to study the effect of systemic signals on hemato-

poiesis [50]. However, this last paper was retracted after

publication and conclusions should therefore be con-

sidered with caution. It remains to be determined to what

extent the adverse effects of age on HSC functioning are

reversible. Detailed studies on the molecular causes of

HSC aging will be required to assess the feasibility of

reversibility.

Conclusion
Aging of the hematopoietic system is accompanied by

declining immunocompetence, increased incidence of

anemia and increased predisposition to myeloid leuke-

mias. Two models have been put forward to account for

the changing functional properties of the aging HSC pool.

In one model the functional potential of stem cell clones
Current Opinion in Immunology 2011, 23:512–517
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within the pool changes over time because of gradual

alterations that occur in all HSCs. Alternatively, the clonal

composition of the functional stem cell pool is different in

older individuals compared to younger individuals, while

individual HSCs do not age. However, both models are

not mutually exclusive. Clonal studies at the single cell

level will be required to distinguish between these

scenarios. Moreover, it is likely that these changes are

at least partly influenced by micro-environmental effects

(Figure 2), of which we understand very little. Although it

is evident that the prevalence of hematological diseases

increases with age, it is unclear whether the observations

made in aged murine HSCs are also evident in humans

and contribute to the initiation of disease.
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