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Clonal heterogeneity as a driver of disease variability in the evolution
of myeloproliferative neoplasms
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Myeloproliferative neoplasms (MPNs) are clonal hematological diseases in which cells of the
myelo-erythroid lineage are overproduced and patients are predisposed to leukemic transfor-
mation. Hematopoietic stem cells are the suspected disease-initiating cells, and these cells must
acquire a clonal advantage relative to nonmutant hematopoietic stem cells to perpetuate dis-
ease. In 2005, several groups identified a single gain-of-function point mutation in JAK2 that
associated with the majority of MPNs, and subsequent studies have led to a comprehensive
understanding of the mutational landscape in MPNs. However, confusion still exists as to
how a single genetic aberration can be associated with multiple distinct disease entities.
Many explanations have been proposed, including JAK2V617F homozygosity, individual pa-
tient heterogeneity, and the differential regulation of downstream JAK2 signaling pathways.
Several groups have made knock-in mouse models expressing JAK2V617F and have observed
divergent phenotypes, each recapitulating some aspects of disease. Intriguingly, most of these
models do not observe a strong hematopoietic stem cell self-renewal advantage compared with
wild-type littermate controls, raising the question of how a clonal advantage is established in
patients with MPNs. This review summarizes the current molecular understanding of MPNs
and the diversity of disease phenotypes and proposes that the increased proliferation induced
by JAK2V617F applies a selection pressure on the mutant clone that results in highly diverse
clonal evolution in individuals. � 2014 ISEH - International Society for Experimental Hem-
atology. Published by Elsevier Inc.
Introduction
Multipotent hematopoietic stem cells (HSCs) are a rare sub-
population of cells in the bone marrow that sit atop a com-
plex and tightly controlled hierarchical production process
that eventually leads to the formation of all types of mature
blood cells [1]. To maintain a homeostatic balance, a given
HSC must on average produce one daughter cell that con-
tributes to active hematopoiesis and another daughter cell
that retains the HSC maintenance capacity of the parent
cell [2]. Perturbations in a single HSC that drive an amplifi-
cation or depletion of particular mature blood cell types can
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typically be tolerated unless that HSC also acquires a clonal
advantage [3,4].

The concept of heterogeneity in HSCs, and indeed can-
cers in general, has emerged in the context of the enormous
genomic knowledge gathered in recent years, and therefore,
it is important to consider the molecular pathogenesis of
disease from a cell biological perspective. This review de-
tails the process of stem cell subversion through the lens
of myeloproliferative neoplasms, a set of chronic, clonal
disorders that are an excellent model system for studying
cancer progression.

Hematopoietic stem cell heterogeneity
Even in the earliest stages of studies in HSC biology, marked
heterogeneity in self-renewal of pluripotent hematopoietic
for Experimental Hematology. Published by Elsevier Inc.
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cells was observed [5,6]. More recently, differences in pro-
liferation, cell cycle status, self-renewal durability and types
of mature cells produced have all been uncovered (reviewed
in [7]). These aspects could be explained by diverse intrinsi-
cally determined, (epi-) genetic differentiation programs
of individual stem cells [8], by variances in the stem cell
micro-environment [9], or by an HSC organizational struc-
ture governed by stochastic fate choices [10]. Recently,
single-cell transplantation studies of highly purified HSC
populations revealed variability in white blood cell output
and self-renewal durability, identifying at least four distinct
HSC subtypes, only two of which displayed durable self-
renewal properties [11]. The first of these exhibited a rela-
tive deficiency in lymphoid cells, and the latter, a balanced
proportion of mature cell production. Importantly, second-
ary transplantation studies using clonally derived bone
marrow suspensions or single purified HSCs revealed highly
similar repopulation patterns, suggesting that distinct HSC
characteristics are intrinsically determined [11,12]. These
studies were further bolstered by the prospective enrichment
of lineage-biased HSC subtypes using alternative flow cyto-
metric isolation strategies [13–16]. Even more recently, a
reclassification of HSC subtypes has been proposed based
on reconstitution time periods [17].

Tumor heterogeneity
Genetic, morphologic, phenotypic, clinical, and cell sur-
face marker heterogeneity has been observed among
cells from patients with both solid tumors and hematologic
malignancies (i.e., intertumor variation) [18–21]. Most re-
cently, clonal heterogeneity has been also observed within
a tumor from a single patient (i.e., intratumor variation)
[18,20,22,23]. Traditionally, two main theories have been
proposed to explain tumor heterogeneity. The first, the ‘‘sto-
chastic model,’’ suggests that all cells in the clonal hierarchy
are equally susceptible to malignant transformation. Such
tumor cells would be biologically equivalent, but would
behave variably because of further genetic, epigenetic, or
environmental changes. Heterogeneity would thus be ex-
plained by the existence of multiple cells within a tumor
possessing the ability to drive a malignant clone [24]. The
second, the ‘‘hierarchical model,’’ suggests that tumorigenic
mutations occur only in primitive cells (or drive differenti-
ated cells backward to the primitive state) and cause malig-
nancy through an aberrant differentiation cascade. In this
model, cancer stem cells (CSCs) are biologically distinct
from other tumor cells and are the only ones that can give
rise to a new tumor (also referred to as a tumor-initiating
cell). Evidence for this latter theory is strongest in acute leu-
kemias, in which a rare subpopulation of CSCs is present at
the apex of the clonal hierarchy (reviewed in [25]). Because
stem cells persist for a long period, there would be a greater
opportunity for mutations to accumulate in these cells
compared with short-livedmature cells, and fewer mutations
would be required to maintain self-renewal [26]. Recently, it
has been suggested that genetic diversity, epigenetic modifi-
cations and the tumor micro-environment can, together or
separately, influence stemness and thereby influence tumor
progression [27]. As a result of acquiring advantageous
mutations, several malignant subclones could be established.
In some clones, there would be a strict hierarchy in which
only a few CSCs would exist, whereas in other clones, the
majority of cells would retain self-renewal properties,
thereby eliminating the hierarchical component of the tumor.

Hierarchical cancer stem cell model in hematologic
malignancies
The suggestion that malignant clones mimic normal cell
biology was accompanied by the supposition that CSCs
represent a rare subpopulation of stem cells. Subsequent ev-
idence in melanoma [28] and glioblastoma [29] has chal-
lenged this theory’s applicability to all cancers. Moreover,
no strong consensus exists about the rarity of tumor-
initiating cells, because higher frequencies of cells that are
capable of driving tumor growth have been observed in
various lymphoma and leukemia transgenic mouse models
[30]. However, many cancers have substantial evidence of
a cancer stem cell model, including breast cancer [31], brain
cancers [32,33], and colon cancer [34,35]. In myeloid malig-
nancies, CSCs are suggested to be responsible for the relapse
after therapy that removes the bulk tumor, but spares the
tumor-initiating CSCs [36,37]. Although the CSC con-
cept cannot be universally applied, a substantial number of
tumor types are associated with a hierarchical organization
(reviewed in [3]).

Myeloproliferative neoplasms as a model to track clonal
evolution
Myeloproliferative neoplasms (MPNs) are clonal hemato-
logic diseases in which cells of the myelo-erythroid lineage
are overproduced. They include BCR-ABL-positive chronic
myelogenous leukemia, as well as the three classic BCR-
ABL-negative MPNs known as polycythemia vera (PV),
essential thrombocythemia (ET), and myelofibrosis (MF)
(reviewed in [38]). MPNs have been found to derive from
the outgrowth of a single HSC or early myeloid progenitor
that acquires a somatic mutation(s) [39–41]. Mutant cells
clonally expand as the result of developing a hypersensitivity
to, or independence from, cytokines that regulate prolifera-
tion, differentiation, and/or survival. Formal evidence for
an acquired genetic lesion in BCR-ABL-negative MPNs
came in 2005, when several research groups discovered a
single-point mutation in JAK2, called JAK2V617F, which
is associated with the vast majority of cases of PV, ET, and
MF [42–45]. Subsequent discoveries in non-JAK2V617F
MPNs identified somatic mutations in JAK2 exon 12 in pa-
tients with PV [46,47] and activating mutations of the throm-
bopoietin receptor gene MPL in patients with ET and MF
[48,49]; most recently, two studies reported that the majo-
rity of patients with nonmutated JAK2 carry a mutation in
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Table 1. Most commonly affected genes in myeloproliferative neoplasms

Gene Function Frequency Reference

JAK2V617F Cytokine signaling O95% PV, 50–60% ET/MF [42–45]

JAK2 (exon 12) Cytokine signaling 1–2% PV [47]

CALR Cytokine signaling 25–33% ET/MF [50,51]

MPL Cytokine signaling 3–5% ET, 8–11% MF [48,66]

SH2B3 (LNK)* Cytokine signaling 2–6% [59,66]

CBL* Cytokine signaling 5–10%, most common in MF [60,62,66]

SF3B1 Splicing 3–5% [61,66]

SRSF2 Splicing 3–5% [61,66]

U2AF1 Splicing 3–5% [61,66]

ZRSR2 Splicing 1–2% [61]

TET2* Epigenetic modifier 5–17% [57,58,62,63,66]

DNMT3A Epigenetic modifier 6–8%, most common in MF [57,58,62,66]

IDH1/IDH2* Epigenetic modifier 3–15%, most common in MF [57,58,62,63,66]

ASXL1* Epigenetic modifier 4–22%, most common in MF [57,58,62,63,66]

EZH2* Epigenetic modifier 8% most common in MF [57,58,66]

p53* Transcription factor 1–2% [57,58,66]

IKZF1* Transcription factor Rare [57,58,66]

FOXP1 Transcription factor Rare [57,58,66]

ETV6 Transcription factor Rare [57,58,66]

CUX1 Transcription factor Rare [57,58,66]

NF-E2 Transcription factor Rare [57,58,66]

RUNX1* Transcription factor Rare [57,58,66]

ET 5 essential thrombocythemia; MF 5 myelofibrosis; PV 5 polycythemia vera.

*Mutations associated with disease progression.

843J. Prick et al./ Experimental Hematology 2014;42:841–851
the endoplasmic reticulum chaperone calreticulin (CALR)
[50,51]. The most frequently mutated genes are listed in
Table 1.

Despite sharing common genetic features, PV, ET, and
MF are classified as three distinct diseases with distinct
clinical phenotypes (reviewed in [38]). Still they all share
some clinical features, including a chronic course, the
risk of major thrombotic events, and the risk of transforma-
tion to acute leukemia. In particular, similar characteristics
are observed in the early phase of disease, making them
difficult to distinguish [52].

Myeloproliferative neoplasms are a useful disease model
in which to gain an understanding of tumors because they
arise from a single cell, readily permit clonal analysis, and
are chronic diseases, thus facilitating dissection of disease
evolution. MPNs are not associated with a differentiation
block and therefore permit studies of the earliest stages of
malignancy that are inaccessible in other tissues. The discov-
ery of JAK2V617F in 2005 [42–45] has allowed research on
the role of gene dosage [53], the role of JAK2V617F in hema-
tologic transformation [54], and the specific effect on mutant
HSCs compared with their downstream progenitors [55].

Molecular characterization of myeloproliferative
neoplasms
The mutational landscape of MPNs is increasingly well un-
derstood. The JAK2V617F mutation is the most prevalent
mutation in MPNs and is present in the majority of PV pa-
tients (O95%) and in a significant proportion of ET and
MF patients (50–60%) [42–45]. The kinase activity is dysre-
gulated because of loss of the negative regulation of the
pseudo-kinase (JH2) domain, resulting in independence
and/or hypersensitivity of hematopoietic cells to growth fac-
tors and cytokines [56]. JAK2V617F is present in cells of
the hematopoietic compartment, but not in germline DNA
[42–45], and serves as a powerful diagnostic tool to discrim-
inate PV, ET, and MF from reactive causes of erythrocytosis
or thrombocytosis.

Several additional mutations have been subsequently
identified in MPNs, including genes involved in cytokine
signaling, splicing machinery, transcription factors, and
epigenetic modifiers (reviewed in [57,58]). Mutated genes
that also target the JAK-STAT cytokine signaling pathway
have been found in exon 12 of JAK2 and in the myeloprolif-
erative leukemia virus oncogene (MPL), and these are mutu-
ally exclusive with JAK2V617F. Co-occurring mutations
involved in the JAK-STAT pathway have also been identi-
fied, including loss-of-function mutations in the adaptor pro-
tein Sh2b3 (LNK), somatic mutations in suppressors of
cytokine signaling genes, and mutations in other negative
regulators of cytokine signaling, including CBL (Casitas
B-cell lymphoma) [59,60]. RNA splicing mutations (in-
cluding SF3B1, SRSF2, and U2AF1) [61] and transcription
factor mutations (including IKZF1, FOXP1, ETV6, CUX1,
NF-E2, RUNX1, and p53) have also been found to have roles
inMPN pathogenesis. The final class ofmutations, suspected
of having a role in driving the clonal advantage in MPNs,
comprises those involving epigenetic regulation. Such epige-
netic modifiers include TET2, IDH1/2, DNMT3A, ASXL1,
and EZH2 [62].
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Figure 1. Classification of myeloproliferative neoplasm (MPN) subtypes. It remains unclear why one mutation is associated with three distinct disease en-

tities. Because diagnosis of MPN patients is based on binary decisions on continuous variables (e.g., platelet count) at single time points, patients with border-

line values are difficult to classify. Moreover, primary myelofibrosis (MF) may in fact represent the presentation of the accelerated phase of polycythemia

vera (PV) or essential thrombocythemia (ET). Decisions are further complicated by additional factors that could alter presentation (e.g., gene dosage, STAT

signaling, the role of interferon (IFN)-a, familial predisposition, and host genetic variation). This variability is further illustrated by the diverse phenotypes

observed in different mouse models of JAK2V617F.
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Disease progression, illustrated most clearly by transfor-
mation to acute myeloid leukemia (AML), does not seem to
be explained by individual genetic aberrations, although
some mutated genes are frequently present in secondary
AML (e.g., IDH1/2, TET2, ASXL1, LNK, TP53, EZH2,
IKZF1, and RUNX1). However, in MF patients, only a
handful of these mutations are associated with a poor prog-
nosis, including IDH1/2, TET2, ASXL1, and TP53 [63–65].
The latter mutations are almost always detected in both the
primary MPN and the secondary AML, with a prevalence
of around 20%. Interestingly, the prevalence of ASXL1 rep-
resents 22% of MF patients, but only 5% of PV and ET
patients [66]. The frequencies of TET2 and IDH1/2 muta-
tions in secondary AML are around 25% and 10%, respec-
tively [63] and an even higher frequency (45.5%) of TP53
mutations has been observed in post-MPN AML [67].

Despite the discovery of this large range of mutations,
about one-third of ET and MF patients lack an identifiable
mutation. Recently, however, two groups discovered a so-
matic mutation in the endoplasmic reticulum chaperone
CALR in the majority of JAK2 mutation-negative patients
[50,51] that was found to be mutually exclusive with
JAK2V617F and MPL. CALR-mutant ET and MF patients
had a milder phenotype compared with JAK2V617F-mutant
ET and MF patients and had significantly longer overall sur-
vival [50].CALR can now be used as an additional diagnostic
tool to discriminate several MPN subtypes [68], providing a
diagnosis in patients previously difficult to classify.

Such a finding has major implications for previous MPN
research that focused mostly on JAK2-mutant compared
with JAK2-nonmutant patients. Such studies had not ac-
counted for CALR status, and many ‘‘mutation-negative’’
patients are likely to be CALR positive; thus, these old data
sets could hold substantial new information (as performed
recently by Rampal et al. [69]).

Characterization of different myeloproliferative
neoplasm subtypes
Despite this extensive molecular knowledge, it remains puz-
zling why this collection of mutations results in three distinct
disease entities. Current approaches to classification ofMPN
subtypes have also met with confusion for several reasons
(Fig. 1): First, MPN subtypes are diagnosed mainly on the
basis of binary decisions regarding values that are contin-
uous (e.g., hemoglobin, hematocrit, or red cell mass). This
makes patients with borderline values difficult to diagnose,
as the disease progresses and is further complicated by the
fact that a raised hematocrit does not always predict an
increased red cell mass and vice versa. This confusion is
illustrated particularly well in patients who present with iso-
lated thrombocytosis and increased bone marrow reticulin
fibrosis. If these patients lack other ETorMF characteristics,
they can be diagnosed with neither ET nor MF, although the
clinical features of a MPN are clearly present [70].

Second, the existence of three distinct disease entities
could itself be questioned: Is primary myelofibrosis (PMF)
a separate disease when it could be viewed as an accelerated
phase of previously undiagnosed ET or PV [38,70,71]? This
concept is supported by the fact that PMF is clinically undis-
tinguishable from post-ET MF and that the frequencies of
JAK2V617F, CALR, and MPL mutations are similar in ET
and PMF. Also, patients who are diagnosed with PMF might
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have had thrombocytosis for many years before diagnosis.
This has major implications for MPN diagnoses, because
PV and ET could then be considered as chronic phase
MPNs and MF as accelerated phase MPNs, preceded by
another (undiagnosed) MPN [38].

A third reason for confusion in our understanding of
MPN classification is the large variability observed in dis-
ease phenotypes in mouse knock-in models (reviewed in
[72,73]). Heterozygous mouse JAK2V617F models have a
PV-like phenotype [74–76] with wide variations in hemato-
crit, platelet, and white blood cell values, whereas a human
V617F knock-in mouse model has an ET-like phenotype,
where mice progress to PVor MF [77]. The effect on blood
cell types produced differs among the four models, varying
from a mild increase in some lineages [76,77] to a more
than 80-fold increase in erythroid and myeloid precursors
[75]. Also, the effect on stem and progenitor cells is not
consistent among these mouse models; some models have
an increased primitive cell fraction [74,78,79], and other
models have a decrease or no change in stem and progenitor
cell fraction [55,76,77].

Gene dosage
Along with the discovery of JAK2V617F, it was noted
that although most MPN patients had cells with a heterozy-
gous mutation, a small proportion, mostly PV patients, also
possessed cells that were homozygous for JAK2V617F. Clas-
sically, loss of the wild-type allele in tumor suppressors is a
common mechanism of developing homozygosity; however,
for JAK2V617F, it typically results from acquired uniparen-
tal disomy. Uniparental disomy is a mitotic recombination
and duplication of the mutant allele, and the progression
from a heterozygous to a homozygous state in MPNs occurs
in the distal part of chromosome 9p (UPD9p) [44]. Uniparen-
tal disomywas originally reported in 30% of PV patients, but
was rare in ET [42–45], and homozygous JAK2V617F
erythroid clones were observed in PV patients, but rarely in
ET patients [80]. These data suggest that gene dosage is an
important distinguishing factor in different MPNs, whereby
JAK2V617F homozygosity results in a PV phenotype. How-
ever, a recent study reported that homozygous clones are
detectable in approximately 50% of ET patients and are un-
detectable in some PV patients [53]. These discordant obser-
vations make it difficult to draw conclusions about the causal
role of homozygosity of JAK2V617F in PV patients. Never-
theless, the expression of mutant JAK2 at a specific level in
various cell types seems to play a role in the different disease
phenotypes [81], although gene dosage cannot be the sole
contributor to the distinct disease phenotypes.

Downstream JAK2 signaling
The dysregulated kinase activity caused by the JAK2V617F
mutation leads to independence and/or hypersensitivity of
hematopoietic cells to growth factors and cytokines [56].
Several signaling cascades are activated as a result of
mutated JAK2, including the STAT5, MAPK, RAS, and
PI3K pathways [43,44,82,83]. In addition to gene dosage,
these different signaling pathways could be another impor-
tant player in driving phenotypically distinct disorders.

A powerful approach to analysis of distinct MPN pheno-
types associated with JAK2V617F involves the use of cells
clonally derived from MPN patients that are genotyped for
their individual JAK2 mutational status. This approach
readily permits the identification of clones with distinct ge-
notypes fromwithin the same patient, thereby avoiding inter-
individual variations. Using this approach, Chen et al. found
that heterozygous mutant erythroid colonies of PV and
ET patients exhibit differences in their signaling pathway
despite bearing the same single genetic lesion and spe-
cifically pointed toward a differential response to STAT1.
This work indicated that an ET-like phenotypewas accompa-
nied by enhanced STAT1 activity that resulted in an increase
inmegakaryocytic differentiation and repression of erythroid
differentiation. Furthermore, inhibition of STAT1 activity
with a dominant negative form of STAT1 in progenitor cells
resulted in a switch to a PV-like phenotype with an increase
in erythroid colonies. These results suggest that the disease
phenotype of individual patients depends on a certain degree
of intracellular STAT1 signaling [84].

The role of other signaling moieties downstream of
JAK2 has also been examined in relation to JAK2V617F.
One study demonstrated that JAK2V617F mutant cells co-
expressing the erythropoietin receptor lacked a STAT5
binding site and exhibited decreased malignant cell trans-
formation and tumorigenesis [85], although the role of
STAT5 in MPNs could not be totally clarified by this study.
Subsequently, crossing a JAK2V617F knock-in mouse
strain with a STAT5 knock-out mouse strain revealed that
deletion of STAT5 could rescue the PV phenotype induced
by JAK2V617F expression [86]. Replacing STAT5 ex-
pression by retroviral transduction and transplantation in
a STAT5-deficient mouse resulted in redevelopment of a
PV phenotype and blood counts that were comparable to
those of the JAK2V617F knock-in mouse with wild-type
levels of STAT5. These studies concluded that STAT5 is
required for the pathogenesis of PV induced by JAK2V617F
[86]. This was corroborated by work that indicated that
JAK2V617F mice did not have a PV phenotype after dele-
tion of STAT5 [87]. Together these data suggest that STAT5
might be an interesting drug target, although the impact on
normal STAT5 signaling would be a concern.

A final area of intense scrutiny is the role of interferon-a
which been used to treat MPNs for many years [88,89]
without a clear idea of the mechanism by which inter-
feron-a operates. Recently, it was reported that in addition
to achieving normalization of blood counts, interferon-a
also reduces JAK2V617F allelic burden [90,91] and acti-
vates the cell cycle machinery in quiescent mutant HSC pop-
ulations [92,93]. Work in JAK2V617F knock-in mouse
models also supports the therapeutic potential of
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interferon-a, where the mutant stem and progenitor cells are
killed more effectively than their wild-type counterparts
[94,95]. This will certainly be an area of great interest in
years to come.

Alternative theories for distinct myeloproliferative
neoplasm phenotypes
In addition to gene dosage and downstream JAK2 signaling
differences, other mechanisms have been suggested to play a
role in distinct MPN phenotypes. One theory suggests a fa-
milial predisposition for the development of MPNs because
of additional inherited alleles. Although most MPNs appear
to be sporadic, familial MPNs have been widely described
and are clinically similar to the sporadic type. In familial
cases, inactivation of JAK2V617F, MPL W515L/K, and
TET2 is the most recurrent somatic mutation and is present
in combination with inherited MPN-predisposition alleles
[96–98]. It has been demonstrated that JAK2V617F prefer-
entially appears on a specific JAK2 haplotype, called ‘‘46/1’’
[99], and this appears to be the most important common risk
factor for the acquisition of JAK2V617F, resulting in the
development of MPNs. Two theories have been proposed
to explain this observation: the ‘‘hypermutability theory’’
suggests that 46/1 is genetically more unstable and leads
to a faster mutation acquisition, whereas the ‘‘fertile ground
theory’’ suggests that there is no difference in acquisition of
JAK2V617F, but additional factors on the 46/1 haplotype
provide a selective advantage to the JAK2mutant clone [96].

Another possible explanation for the phenotypic diver-
sity observed among different MPN subtypes focuses on in-
herited modifiers in individual patients. Single-nucleotide
polymorphisms have been analyzed in gene regions that
are involved in the JAK-STAT pathway, including the
genes JAK2, MPL, EPOR (erythropoietin receptor) and
G-CSFR (granulocye colony-stimulating factor receptor),
in large patient cohorts. These studies have identified spe-
cific single-nucleotide polymorphisms in JAK2 and only
one single-nucleotide polymorphism in EPOR that are
associated with PV, but not with ET or MF, suggesting
that host genetic variation might lead to a specific disease
phenotype [100].

Clonal evolution of myeloproliferative neoplasms
The relationship between the JAK2V617F mutation and the
clonal expansion of mutant cells that eventually results in
an MPN is poorly understood. One certain requirement for
allMPNs is that the initial clonemust expand relative to other
clones within a patient, and generally, this is thought to occur
through the acquisition of amutation or series ofmutations in
HSCs that give the mutant clone a self-renewal advantage
over time. This process can eventually lead to monoclonal
hematopoiesis, which is a well-documented phenomenon
in hematologic malignancies [66,101]. The reduced clonal
diversity with agemay alter the competitive ability of endog-
enous HSCs, thereby permitting (or restricting) the expan-
sion capabilities of a clone that acquires a JAK2 mutation.
Importantly, the clonal evolution of MPNs sometimes in-
volves the progression to a more advanced disease (e.g.,
JAK2V617F homozygosity, secondary MF, or AML).

Expansion of homozygous clone
Typically, JAK2V617F homozygosity has been regarded as a
feature of PV, but recent evidence indicates that JAK2V617F
homozygosity occurs with similar frequencies in both PV
and ET [53]. The prevalence and clonal relationship of
homozygous mutant erythroid colonies can be determined
by genotyping colonies from JAK2V617F-positive PV
and ET patients. When this was performed, homozygous
erythroid colonies could be identified in both ET and PV pa-
tient samples, but the overt expansion of a dominant homo-
zygous clone was observed only in PV. These data suggest
the need for additional non-JAK2 mutations to drive disease
progression, a hypothesis that is further supported by the
observation in mouse models [55,77,81] and normal individ-
uals [102,103] that JAK2V617F alone is insufficient to cause
clonal expansion and disease progression. In humans, this
is illustrated by transplantation experiments revealing that
human cell engraftment in immunodeficient mice could
not be achieved by primitive cells with a low burden
of JAK2V617F. Furthermore, primitive cells from high-
burden PV patients that were capable of repopulating in
xenograft experiments were not able to outcompete normal
cells [104].

Several lines of evidence suggest the presence of a pre-
JAK2 event (reviewed in [98]). Clonogenic cytogenetic ab-
normalities have been observed in JAK2V617F-positive
MPNs, including deletion of 20q, trisomy 8, and trisomy 9.
Additionally, JAK2V617F-positive patients have developed
JAK2V617F-negative AML [105,106], which supposes the
existence of a pre-existing clone that diverges into a JAK2
mutant and a JAK2 wild-type subclone, the latter of which
acquires the leukemogenic event. However, no consensus ex-
ists about the molecular identity of the ‘‘pre-JAK2-phase,’’
and this is further confounded by inaccurate JAK2 quantifi-
cation and X-chromosome inactivation patterns [105].

Different roles in different cells
Evidence is mounting that the JAK2V617F mutation
affects HSCs differently than progenitors and mature cells
[55,79,107]. This is perhaps best understood by asking
what the impact of increasing proliferation would be on a
cell population that often divides (progenitor cells) com-
pared with its impact on a cell population that is largely
quiescent (HSCs). In the mouse, long-term HSCs are esti-
mated to divide just five times throughout adult life, and
their cell biology (and maintenance of self-renewal) is
adapted to this frequency of cell division [108]. Indeed,
recent evidence in single-cell assays suggests that HSC
self-renewal capacity is negatively affected by JAK2V617F,
but progenitor cells are given an enormous boost in their
proliferation capacity [55].
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In MPN patients, the JAK2V617F mutation is more
prevalent in granulocytes than in a small minority of prim-
itive cells, especially in PV and ET patients [109–112].
HSCs from MF patients, on the other hand, exhibit a higher
JAK2V617F mutation frequency [110]. This is mirrored
in patients with chronic myeloid leukemia, where HSC
self-renewal ability is compromised [113] and BCR-ABL
is expressed in only a small proportion of primitive cells
[114,115]. This suggests that chronic phase disease is the
result of progenitor cells that are benefiting from the prolif-
eration advantage (and causing disease), whereas HSCs
themselves are not benefiting.

Moving forward, therefore, it is critical to undertake
studies of stem and progenitor cells in purified fractions.
Studies that assess lin�Sca-1þc-Kitþ cells in mouse models
or CD34þCD38� cells in patients must be recognized as
assays of progenitor cells (and not HSCs) because these
populations are dominated by progenitor cells. To study
the impact of individual mutations on HSCs and the impli-
cations for establishment, maintenance, and expansion of a
clonal population, it is therefore crucial to assess this in
highly purified populations.

JAK2V617F and hematopoietic stem cell biology
Clonal expansion can occur only when a clone has a survival
and/or proliferation advantage compared with other clones
in the organism. In malignancies, acquisition of such a
clonal advantage is critical for tumor establishment and
disease progression. In MPNs, clonal expansion (or lack
thereof) is especially interesting at the HSC level, because
the balance of self-renewal and differentiation could be
used as a therapeutic target similar to successful studies us-
ing all-trans-retinoic acid in acute promyelocytic leukemia
(reviewed in [116]).

Along these lines, treatment with interferon-a in knock-
in mouse models has recently been demonstrated to specif-
ically deplete JAK2V617F-propagating cells, leading to cell
cycle activation of long-term mutant HSCs [94,95]. Also,
recent evidence has suggested that the MPN-associated
adaptor molecule LNK modulates the homeostatic regula-
tion of HSCs [117]. A complete understanding of how the
clonal advantage is established and maintained could reveal
additional information about the key mechanisms driving
the clonal evolution of MPNs. If the establishment of an ad-
vantageous clone can be mapped out step by step, therapies
could be tested at each stage of the process.

Mouse models are useful to examine relative self-renewal
capacity in mutant HSCs because these cells can be isolated
at high purities and are from a defined genetic background.
Several JAK2V617F knock-in mouse models have been
developed, although the effect on stem and progenitor cells
is not entirely consistent among these mouse models (re-
viewed in [72,73]). Serial competitive transplantation exper-
iments are the gold standard for testing relative stem cell
activity, and these experiments are ideally carried out using
age- and sex-matched wild-type littermate controls. To
formally demonstrate a self-renewal advantage (and thereby
infer a clonal advantage over nonmutant HSCs in MPN
patients), secondary transplantation experiments must be
carried out. One knock-in model [74] exhibits a PV-like
phenotype with expansion of phenotypically defined stem
and progenitor cells in the bone marrow and spleen. In pri-
mary transplantation experiments with a 75:25 heterozygous
mutant:WT cell ratio, this same model did not display a
strong HSC advantage, because donor chimerism in recipi-
ents was observed at a 70:30 ratio [118]. Another mouse
knock-in model [76,79] demonstrated that JAK2V617F
disease-initiating cells are predominantly long-term HSCs
and achieve clonal advantage during disease progression.
Intriguingly though, when secondary transplantation exper-
iments were performed in this model there, no HSC advan-
tage was observed [76]. Similarly, another knock-in model
[94] described an increased production of mutant HSCs in
primary transplantations that was not mirrored in secondary
transplantations. The knock-in models produced by Li et al.,
using a human JAK2V617F, displayed a mild HSC defect in
the heterozygous mouse that was more marked in secondary
transplantations [55,77] and a severe defect in JAK2V617F
homozygous mice in primary and secondary transplanta-
tions [55,77,81].

A proposed model of selective pressure
Most evidence suggests that JAK2V617F does not, on its
own, confer a strong HSC self-renewal advantage, and dis-
ease heterogeneity among JAK2-mutant patients is substan-
tial. The easiest explanation for such differences would be
the acquisition of specific mutations for specific disease eti-
ologies; however, the cataloguing exercise in several large
genomic studies has yet to identify ET-specific or PV-
specific collaborators alongside JAK2V617F. We therefore
propose that selective pressure to obtain a self-renewal
advantage that is imposed on the initiating JAK2V617F-
positive clone results in stem and progenitor cell heteroge-
neity that eventually manifests as disease heterogeneity
(Fig. 2). In this model, a single cell acquires the JAK2V617F
mutation, and its consequent proliferation advantage creates
a clone that grows rapidly, but lacks a long-term self-
renewal advantage. Each and every cell of the clone would
then be subjected to selective pressure to acquire a self-
renewal advantage because of the increased replicative
stress. The clone of cells bearing the JAK2V617F mutation
would proliferate and differentiate, creating a large popula-
tion of heterogeneous target cells for additional mutations.
The lineage biases (e.g., platelets or erythrocytes) displayed
by the distinct disease subtypes would then be derived from
the intrinsic bias of the cell that acquires the self-renewal
advantage (i.e., the target cell defines the disease). In this
manner, it would be possible to develop diverse phenotypes
from similar starting cell populations that evolve differently
prior to acquiring a clonal advantage. These possibilities
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Figure 2. Clonal evolution in myeloproliferative neoplasms (MPNs). (A) Normal steady state: On average, for every nonmutant hematopoietic stem cell

(HSC) that divides, one daughter cell retains HSC potential. Throughout the life of the organism, the number of HSCs remains approximately constant.

(B) A JAK2V617F-mutant HSC divides more frequently. Because the V617F mutation does not confer increased HSC self-renewal, the number of HSCS

does not increase; however, each HSC will generate more progenitors that will also divide more frequently. Both HSCs and progenitors, therefore, will un-

dergo additional replicative stress. Consequent selection pressure to acquire a clonal advantage causes one of the heterogeneous population of cells to acquire

an additional mutation that drives higher survival and/or self-renewal. The cell that acquires this mutation need not be a HSC, but rather could be any number

of JAK2V617F-mutant stem/progenitor cells, and the target cell of the second mutation could therefore determine the disease phenotype.
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should be testable in mouse knock-in models, assessing both
the impact of single mutations and the combinatorial effect
of double or triple mutant stem and progenitor cells.

Conclusions and future directions
Much work has been undertaken to further understand the
molecular mechanisms that drive MPN pathogenesis. Char-
acterization of the distinct disease subtypes, genetic events
leading to malignant transformation, and the individual
behavior of mutant HSCs are areas of current interest. The
mutational landscape has essentially been established, but
the task of understanding the individual and combinatorial
contributions of each mutation is in its infancy. Existing
data onMPNs should be reconsidered based on the complete
genetic landscape to re-assess questions about differentMPN
subtypes and to understand ‘‘low-burden’’ versus ‘‘high-
burden’’ disease. Individual mutations should be related
to disease phenotype, prognosis, and therapeutic effects. Of
particular importance is for old studies of JAK2V617F-nega-
tiveMPNs to be viewed through the lens ofCALRmutations,
as a substantial portion of ‘‘negative’’ patients would be high-
burdenCALR-mutant patients. This should allow categoriza-
tion of disease into low- and high-clonal-burden disease and
give insight into the biology driving clonal expansion.

Despite the discovery of JAK2V617F almost a decade
ago, there exists no good explanation for how distinct dis-
ease entities arise as the result of a single genetic aberration.
Moreover, it is unclear how the recently discovered muta-
tions in CALR result in disease phenotypes similar to those
of MPNs bearing the JAK2V617F mutation. As a result,
diagnosing MPN patients can be difficult, especially in the
case of patients with borderline blood values. The accurate
characterization of MPN subtypes will lead to more appro-
priate and more personalized treatment of MPN patients.

Another difficulty in treating MPN patients is that
although current therapies can slow down the extensive
cell production, the disease itself remains uncured. One the-
ory suggests that mutant tumor stem cells are not suscepti-
ble to current therapies, and as a result, the disease-causing
cells remain capable of forming a new advantageous mutant
clone, leading to eventual relapse. The composition of these
newly formed clones could differ from that of the original
clone and result in therapy resistance [119].

Much work remains to fully understand disease differ-
ences and the mechanisms that are involved in hematologic
transformation (e.g., to secondary MF or AML). Although
numerous mutations in the JAK-STAT signaling pathway
are mutually exclusive and most common in chronic phase
MPNs, co-occurring mutations (ASXL1 and TET2) with
suspected roles in clonal expansion have also been identi-
fied. The exact role of these genetic aberrations in relation
to disease phenotypes is still unclear, although ASXL1 mu-
tations have been associated with MF [63,120]. With the
vast majority of these mutations now identified, future ef-
forts should be focused on relating these mutations to path-
ogenic mechanisms, clinical outcome, and prognosis.
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A final field of interest in MPN research is the cellular
process underlying disease progression. Obtaining a specific
proliferation and/or survival advantage is critical for tumor
establishment and disease progression. The mechanism of
acquiring a clonal advantage at the HSC level, however, is
still poorly understood. Furthermore, once such an advantage
is obtained, HSCs and their progeny are differently affected.
For example, activating tyrosine kinase mutations on HSCs
appears to negatively affect the self-renewal machinery, but
improve the differentiation and proliferation potential of
HSCs [55,113,121,122]. The effect of such mutations in
progenitor and mature cells, on the other hand, is largely
beneficial, as exemplified by JAK2V617F. This hasmajor im-
plications for disease initiation, especially if the proposed
model of selective pressure is correct, whereby the heteroge-
neous cell population created as a result of the first mutation
will determine eventual disease subtype based on the lineage
biases and differentiation state of the cell that eventually
acquires the self-renewal advantage.

Although the search for factors distinguishing PV, ET,
and MF should be continued, this should be largely achiev-
able by focusing on the relationship of currently discovered
mutations and the clinical outcome and prognosis of pa-
tients bearing these genetic lesions. Understanding the evo-
lution of disease and the individual burden of each mutation
will help to expand our capacity to diagnose MPNs more
correctly and, eventually, to identify more specialized ther-
apies. A good starting point would be to reconsider the vast
amount of existing data in the context of the complete
molecular landscape of disease with ultimate the goal to
track clonal evolution in MPNs to identify the key regula-
tors of disease development and progression.
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