MicroRNAs relate to early worsening of renal function in patients with acute heart failure

Noemi Bruno a, Jozine M. ter Maatena, Ekaterina S. Ovchinnikova b, Eline L. Vegter a, Mattia A.E. Valente a, Peter van der Meer a, Rudolf A. de Boer a, Pim van der Harst a, Daniela Schmitter c, Marco Metrad a, Christopher M. O’Connor c, Piotr Ponikowski e, John R. Teerlink h, Beth Davison h, John G. Cleland i, Michael M. Givertz j, Daniel M. Bloomfield k, Howard C. Dittrich l, Yigal M. Pinto m, Dirk J. van Veldhuisena, Hans L. Hillege a, Eugene Berezikov b, Adriaan A. Voors a,⁎

a University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
b European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
c Momentum Research, Inc., Allschwil, Switzerland
d Department of Cardiology, University of Brescia, Brescia, Italy
e Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
f Medical University, Clinical Military Hospital, Wroclaw, Poland
g University of California at San Francisco, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
h National Heart & Lung Institute, Royal Brompton & Harefield Hospitals, Imperial College, London, UK
i Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
j Merck Research Laboratories, Rahway, NJ, USA
k University of Iowa Carver College of Medicine Cardiovascular Research Center, Iowa City, IA, USA
m University of Amsterdam, Amsterdam, The Netherlands

ARTICLE INFO

Article history:
Received 12 May 2015
Received in revised form 9 October 2015
Accepted 27 October 2015
Available online 11 November 2015

Keywords:
Circulating microRNA
Acute heart failure
Worsening renal function

ABSTRACT

Background: Deregulation of microRNAs (miRNAs) may be involved in the pathogenesis of heart failure (HF) and renal disease. Our aim is to describe miRNA levels related to early worsening renal function in acute HF patients.

Method and results: We studied the association between 12 circulating miRNAs and Worsening Renal Function (WRF; defined as an increase in the serum creatinine level of 0.3 mg per deciliter or more from admission to day 3), absolute change in creatinine and Neutrophil Gelatinase Associated Lipocalin (NGAL) from admission to day 3 in 98 patients hospitalized for acute HF.

At baseline, circulating levels of all miRNAs were lower in patients with WRF, with statistically significant decreased levels of miR-199a-3p, miR-423-3p, and miR-let-7i-5p (p-value < 0.05). The increase in creatinine during the first 3 days of hospitalization was significantly associated with lower levels of miR-199a-3p, miR-27a-3p, miR-652-3p, miR-423-5p, and miR-let-7i-5p, while the increase in NGAL was significantly associated with lower levels of miR-18a-5p, miR-106a-5p, miR-223-3p, miR-199a-3p and miR-423-3p. MiR-199a-3p was the strongest predictor of WRF, with an Odds Ratio of 1.48 (1.061–2.065; p-value = 0.021) and a C-index of 0.701.

Conclusions: Our results show that the levels of circulating miRNAs at hospital admission for acute HF were consistently lower in patients who developed worsening of renal function. MiR-199a-3p was the best predictor of WRF in these patients.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

MicroRNAs (miRNAs) are involved in the regulation of several cell processes, including proliferation, stress response, inflammation and apoptosis [1]. Their deregulation might therefore play a role in the pathogenesis of heart failure (HF) [2,3]. This is supported by studies showing that the expression levels of miRNAs change significantly with disease severity [4]. In addition, specific miRNA patterns were related to the diagnosis and prognosis in HF [5–8]. We recently showed that certain
circulating miRNAs were significantly reduced in acute HF (rapid onset of signs and symptoms associated with volume overload requiring immediate treatment) in comparison with chronic HF (signs and symptoms caused by abnormalities of the heart) patients and healthy controls and that they were associated with a higher risk of mortality at 180 days [9].

Renal impairment is common in patients with acute HF [10]. Worsening of renal function (WRF) in HF patients is the consequence of multiple mechanisms including renal hypoperfusion, increased renal venous and intra-abdominal pressure, neurohumoral and inflammatory activation, and drug therapy for HF [11]. Several definitions of WRF have been used in literature, some of the most common being an increase in creatinine ≥0.3 mg/dL, or an increase in GFR >20% [10,12].

miRNAs play a role in renal development, maintenance of renal function, and progression of kidney injury [13]. miRNAs are thought to be key regulators of kidney responses to acute damage, such as acute kidney injury following renal ischemia/Reperfusion ([I/R]) due to hypoperfusion as in acute HF [14]. However, to date, the association between miRNAs and changes in renal function in patients with acute HF has not been studied. In the present study, we describe circulating miRNA levels that are associated to early changes in renal function in patients with acute decompensated HF.

2. Methods

2.1. Population and study procedure

This study is a post hoc case control analysis of the Placebo-controlled Randomized Study of the Selective A1 Adenosine Receptor Antagonist Rolofylline for Patients Hospitalized with acute HF and Volume Overload to Assess Treatment Effect on Congestion and Renal Function (PROTECT) trial, a multicenter, randomized, double-blind, placebo-controlled trial with neutral results. Study design and main results have been published previously [15,16]. The trial was approved by the local Ethics Committee and performed in accordance with the Declaration of Helsinki. Written informed consent was provided by all patients. One hundred patients hospitalized for acute HF with mild to moderate renal impairment were randomly selected. Two patients were excluded from the analyses since renal function variables were not assessed. Medical history and physical examination were recorded at admission. Serum creatinine and Neutrophil Gelatinase Associated Lipocalin (NGAL) were assessed daily from baseline until discharge or Day 6. For NGAL measurements, plasma samples were frozen at −80 °C. NGAL levels were detected by Alere Inc. (San Diego, USA), through sandwich enzyme-linked immunosorbent assays (ELISA) on a microtiter plate. From a panel of 375 circulating miRNAs, twelve indicative miRNAs (miR-let-7i-5p, miR-16-5p, miR-18a-5p, miR-26b-5p, miR-27a-3p, miR-30a-5p, miR-199a-3p, miR-18a-5p, miR-26b-5p, miR-27a-3p, miR-30a-5p, miR-199a-3p, miR-let-7i-5p, miR-16-5p, miR-18a-5p, miR-26b-5p, miR-27a-3p, miR-30a-5p, miR-199a-3p, miR-let-7i-5p) were selected on the basis of their discriminatory performance for WRF. The selected miRNAs were included into a multivariate model and its ability to discriminate between WRF and non-WRF was tested with the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC). A p-value > 0.05 was considered statistically significant for all statistical procedures used.

All analyses were performed using R: A Language and Environment for Statistical Computing, version 3.0.3 (R Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1. Baseline characteristics of patients

Twelve indicative miRNAs were measured at baseline in a total of 98 patients hospitalized with acute decompensated HF from the PROTECT trial. According to the definition of WRF described in the methods section, we identified 17 patients with WRF and 81 patients without WRF. Patients with WRF were more often female (55.6% vs 23.5%, p = 0.016), had a higher systolic blood pressure (126.9 ± 15.9 mmHg vs 117.8 ± 17.1 mmHg, p = 0.047) and a greater use of calcium-antagonists (23.5% vs 7.4%, p = 0.046) compared to patients without WRF. Other clinical and laboratory baseline characteristics, renal function included, were similar between patients with and without WRF (Table 1).

3.2. microRNAs and renal function

Circulating levels of all miRNAs had a similar trend toward lower expression in patients with WRF, with statistically significant reduced levels of miR-199a-3p, miR-423-3p, and miR-let-7i-5p (p < 0.05; Table 2 and Fig. 1). The occurrence of three miRNAs out of twelve
being associated with WRF was validated through the exact binomial test, that produced a \(p = 0.020 \). Hereby we statistically demonstrate that the association of these miRNAs to WRF was not a chance finding due to multiple testing. Table 3 shows the levels of all miRNAs across tertiles of absolute change in creatinine from day 1 to day 3, where the 3rd tertile represents the highest change in creatinine from baseline (Supplementary Fig. A1).

Statistically significant low levels were found in patients with the highest increase in serum creatinine for miR-199a-3p, miR-27a-3p, miR-652-3p, miR-423-5p, miR-let-7i-5p, miR-199a-3p, miR-19a-5p, and miR-223-5p and miR-423-3p and miR-423-5p were also significantly reduced in patients with the greatest change in NGAL levels (3rd tertile) from day 1 to day 3 (Table 4 and Supplementary Fig. A2).

The remaining miRNAs showed a similar consistent trend characterized by lower levels in patients with greater increases in NGAL, but these associations were not statistically significant.

Lower levels of all miRNAs were related to an increased risk of WRF, although not all associations reached statistical significance. MiR-199a-3p was a significant predictor of WRF, with an Odds Ratio (OR) of 1.48 (1.061–2.065; \(p = 0.021 \)) and a C-index of 0.701 (Supplementary Table A1).

Combining miR-199a-3p with four other statistically significant miRNAs, miR-423-3p, miR-423-5p, miR-let-7i-5p, miR-199a-3p, miR-19a-5p, miR-106a-5p, and miR-223-3p was statistically validated (AUC:0.783) to distinguish between WRF and non-WRF (Fig. 2).

4. Discussion

Lower levels of miRNAs were consistently associated with early worsening of renal function during hospitalization for acute HF. In particular, miR-199a-3p was associated with change in several renal parameters and was a significant predictor of WRF.

Recent studies showed that miRNAs play an important role in homeostasis of renal function and progression of kidney diseases [19]. Inhibition of miRNA function through inactivation of Dicer, an enzyme required for the production of mature miRNAs, resulted in multiple abnormalities of miRNA function through inactivation of Dicer, an enzyme required for the production of mature miRNAs, resulted in multiple abnormalities of miRNA function.

The progression in discovering miRNAs and characterizing their functions in kidney diseases has been rapid but understanding the specific role, in cardiac–renal pathophysiology, of the miRNAs examined in our study is still limited. Data available about their role are summarized in the Supplementary Table A2. There are relatively few studies available regarding changes in circulating miRNA levels in patients with renal insufficiency. Neal et al. investigated the levels of five circulating miRNAs (miR-16, miR-21, miR-155, miR-210, and miR-638) in patients with
different stages of chronic kidney failure; they were reduced in patients with severe chronic kidney disease (CKD) in comparison to patients with mild CKD or normal renal function; a significant correlation was displayed between miRNAs circulating levels and estimated glomerular filtration rate [21]. Low circulating levels of specific miRNAs (miR-16 and miR-320) were also detected in plasma of critically ill patients with acute kidney injury (AKI) requiring renal replacement therapy [22].

There is currently no study that related specific miRNAs to renal function in patients with acute HF.

Our results showed that levels of miR-199a-3p, miR-423-3p, miR-let-7i-5p were significantly lower in patients with early WRF, being in accordance with the previous studies that revealed reduced circulating miRNAs in the setting of AKI and severe CKD. The associations we found were not a chance finding, as demonstrated by the significant result obtained with the exact binomial test. We found a consistent trend toward decreased levels of all miRNAs. In addition to the miRNAs mentioned above, the absolute increase in creatinine was directly associated with low levels of miR-27a-3p, miR-423-3p and miR-652-3p.

Previous studies suggested that miR-199a-3p might prevent kidney injury, resulting from hypoxia, and may control inflammation and apoptosis signaling, which mediate tubular damage after I/R injury [23]. Data from a murine model showed that downregulation of miR-199a is required in hypoxia-induced apoptosis through the hypoxia-inducible factor 1α-p53 pathway [24]. The transcription factor TWIST1/miR-199-214 axis is down-regulated in dilated cardiomyopathy [25] and it is a critical regulator of energy metabolism expression, facilitating a metabolic shift from predominant reliance on fatty acid utilization in the healthy myocardium toward increased reliance on glucose metabolism at the onset of HF [26].

Many studies have identified NGAL as an early marker of ischemic or toxic tubular injury and, in kidney I/R injury murine models, the tissue expression of certain miRNAs correlated with its renal expression and plasma levels [27,28]. We also demonstrated a potential role of miRNAs in tubular damage, since reduced levels of miR-199a-3p, miR-18a-5p, miR-106a-5p, miR-423-3p and miR-223-3p were correlated with an increase of NGAL.

The mechanism behind the reduced levels of circulating miRNAs in kidney dysfunction is still unclear. Potential explanations are that in

Table 3
Baseline microRNAs for absolute change of creatinine, expressed in tertiles, from baseline through day 3. MicroRNA levels are presented as median with corresponding interquartile ranges (in the square brackets); the values reported are calculated as Delta Ct. Normalization was performed against geometrical mean of miR-30a-5p and miR-194-5p.

<table>
<thead>
<tr>
<th>Variable</th>
<th>1st tertile</th>
<th>2nd tertile</th>
<th>3rd tertile</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-18a-5p</td>
<td>−0.7 [−2.1−1]</td>
<td>−1.1 [−1.6−0]</td>
<td>0 [−1.2−0.8]</td>
<td>0.275</td>
</tr>
<tr>
<td>miR-106a-5p</td>
<td>−3.6 [−4.8−2.7]</td>
<td>−3.7 [−4.5−2.5]</td>
<td>−3 [−3.4−2.1]</td>
<td>0.064</td>
</tr>
<tr>
<td>miR-26b-5p</td>
<td>−0.8 [−1.6−0]</td>
<td>−0.3 [−1.5−0.5]</td>
<td>0 [−0.7−1]</td>
<td>0.106</td>
</tr>
<tr>
<td>miR-223-3p</td>
<td>−6.1 [−7.6−5]</td>
<td>−6.7 [−8.2−5.1]</td>
<td>−5.7 [−6.7−4.8]</td>
<td>0.214</td>
</tr>
<tr>
<td>miR-199a-3p</td>
<td>−2 [−3.1−0.3]</td>
<td>−1 [−3.3−0.1]</td>
<td>−0.4 [−1.3−1.2]</td>
<td>0.006</td>
</tr>
<tr>
<td>miR-27a-3p</td>
<td>−3.3 [−4.6−2.5]</td>
<td>−3.3 [−4.4−1.8]</td>
<td>−2.5 [−3.3−0.9]</td>
<td>0.026</td>
</tr>
<tr>
<td>miR-652-3p</td>
<td>−1.6 [−2.2−0.2]</td>
<td>−1.1 [−2.3−0]</td>
<td>0 [−1.2−0.6]</td>
<td>0.034</td>
</tr>
<tr>
<td>miR-423-5p</td>
<td>−4.2 [−4.8−2.8]</td>
<td>−3.1 [−4.7−2.5]</td>
<td>−2.8 [−4.2−1.2]</td>
<td>0.046</td>
</tr>
<tr>
<td>miR-423-3p</td>
<td>−1.8 [−2.8−0.6]</td>
<td>−1.8 [−2.9−0.5]</td>
<td>−1.2 [−2−0]</td>
<td>0.139</td>
</tr>
<tr>
<td>miR-16-5p</td>
<td>−8.7 [−9.5−7.5]</td>
<td>−8.7 [−10−7.8]</td>
<td>−8.1 [−9.1−6.9]</td>
<td>0.203</td>
</tr>
<tr>
<td>miR-30e-5p</td>
<td>−3.4 [−4.1−2.3]</td>
<td>−3.3 [−4.9−2]</td>
<td>−2.6 [−3.2−1.4]</td>
<td>0.134</td>
</tr>
<tr>
<td>miR-let-7i-5p</td>
<td>−3.5 [−4.3−2.4]</td>
<td>−3.2 [−3.7−2.3]</td>
<td>−2.6 [−3.2−1.7]</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 4
Baseline microRNAs for absolute NGAL change, expressed in tertiles, from baseline through day 3. MicroRNA levels are presented as median with corresponding interquartile ranges (in the square brackets); the values reported are calculated as Delta Ct. Normalization was performed against geometrical mean of miR-30a-5p and miR-194-5p.

<table>
<thead>
<tr>
<th>Variable</th>
<th>1st tertile</th>
<th>2nd tertile</th>
<th>3rd tertile</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-18a-5p</td>
<td>−0.9 [−2.3−0.5]</td>
<td>−0.4 [−1.3−0.2]</td>
<td>0 [−1.2−0.9]</td>
<td>0.042</td>
</tr>
<tr>
<td>miR-106a-5p</td>
<td>−3.7 [−5−2.4]</td>
<td>−3 [−4.1−2.7]</td>
<td>−2.8 [−3.8−2.2]</td>
<td>0.046</td>
</tr>
<tr>
<td>miR-26b-5p</td>
<td>−1 [−2.2−0]</td>
<td>−0.3 [−1.4−0.7]</td>
<td>−0.3 [−1−0.4]</td>
<td>0.089</td>
</tr>
<tr>
<td>miR-223-3p</td>
<td>−6.9 [−8.5−5.3]</td>
<td>−5.7 [−7.2−5]</td>
<td>−6 [−7.1−4.9]</td>
<td>0.045</td>
</tr>
<tr>
<td>miR-199a-3p</td>
<td>−2 [−3.9−0]</td>
<td>−1.2 [−2.9−0.1]</td>
<td>−0.8 [−1.6−0.3]</td>
<td>0.011</td>
</tr>
<tr>
<td>miR-27a-3p</td>
<td>−2.8 [−5.1−1.9]</td>
<td>−1.3 [−4.1−2]</td>
<td>−2.8 [−3.9−1.3]</td>
<td>0.146</td>
</tr>
<tr>
<td>miR-652-3p</td>
<td>−1.6 [−2.6−0.1]</td>
<td>−1 [−1.8−0.4]</td>
<td>−0.1 [−1.3−0.4]</td>
<td>0.067</td>
</tr>
<tr>
<td>miR-423-5p</td>
<td>−4.2 [−4.9−2.6]</td>
<td>−3.2 [−4.7−2.6]</td>
<td>−2.9 [−4.3−2.3]</td>
<td>0.073</td>
</tr>
<tr>
<td>miR-423-3p</td>
<td>−2 [−3.5−0.9]</td>
<td>−1.9 [−3.1−0.1]</td>
<td>−1.3 [−2.1−0.1]</td>
<td>0.039</td>
</tr>
<tr>
<td>miR-16-5p</td>
<td>−8.8 [−9−7.6]</td>
<td>−8.6 [−10−7.4]</td>
<td>−8.7 [−9−7.4]</td>
<td>0.414</td>
</tr>
<tr>
<td>miR-30e-5p</td>
<td>−3.1 [−4.7−2.2]</td>
<td>−3.3 [−4.3−1.9]</td>
<td>−2.9 [−3.3−1.9]</td>
<td>0.19</td>
</tr>
<tr>
<td>miR-let-7i-5p</td>
<td>−3.5 [−4.5−1.9]</td>
<td>−2.9 [−3.7−2.1]</td>
<td>−2.8 [−3.3−2.3]</td>
<td>0.113</td>
</tr>
</tbody>
</table>
patients with renal dysfunction, circulating miRNAs are secreted to a lower extent by cells, are increasingly taken up by other circulating or resident cells or tissues, or are degraded [29]. The metabolic alterations of renal failure (i.e. hyperkalemia, metabolic acidosis) and the increased amounts of RNA degrading enzymes in circulation following injury might lead to the degradation of certain circulating miRNAs [22].

We showed that miR-199a-3p, miR-let-7i-5p and miR-423-3p had the strongest association with (worsening of) renal function in patients with acute HF. Identifying HF patients at risk of developing WRF is important in preventing progression of disease and adverse events, through early adjustments of medication management (e.g. diuretics) and improved treatment with Renin-Angiotensin-Aldosterone-System-blockers before discharge. However, WRF is difficult to predict, since there is no consensus about its definition [30]. While previous studies have merely shown associations between miRNAs and disease activity, our results suggest a potential role as predictors for WRF, supported by the consistency of lower levels of miRNAs in WRF patients. Circulating miR-199a-3p was already found to be associated with HF diagnosis in regression and receiver operating characteristic analyses in a population of breathless patients [31].

The present data do not allow concluding whether these circulating miRNAs are just markers or mediators of WRF, although previous data [23] have suggested a role for miR-199a-3p in limiting kidney injury. While studies in the cardiovascular and cancer field have displayed the functional mechanism of miRNAs, evidences in patients with renal failure are mostly descriptive.

Although further analysis is needed to prove a causative pathophysiological role of circulating miRNAs in WRF, the possibility to use them as biomarkers in this setting emerges as an exciting field. They have many of the essential characteristics of good biomarkers: they are highly stable and resistant to pH variations and longterm storage at room temperature; they can be reliably analyzed and quantified by real-time PCR. The analysis is extremely sensitive and, since it is sequence-based, it is also very specific [32].

Thus, miRNAs may represent candidate biomarkers of disease severity, since lower levels of circulating miRNAs were associated with increasing severity of HF [9]; in association with additional well-known biomarkers and clinical parameters, they may facilitate early diagnosis, functional assessment and evaluation of disease progression and therapeutic response in HF patients.

A better understanding about their role might give more detailed insights into the pathophysiology of HF and WRF and result in specific biomarker-targeted therapeutic approaches and ideally novel targets for therapy, leading us toward personalized therapeutic treatment of patients with acute HF [33].

4.1. Study limitations

The major limitations are the small sample size of the studied population, its etiologic heterogeneity and the retrospective analysis of data. Our conclusion cannot be generalized as we selected a specific panel of miRNAs relying on their characteristic profile in patients with acute HF. Our predictive miRNA model was not optimized for association with clinical parameters. Finally, we mainly showed associations between miRNA levels and renal function and we cannot provide molecular insights into the underlying mechanisms that cause dysregulation of circulating miRNAs in the setting of WRF in acute HF, since dedicated experimental studies are necessary to further elucidate pathophysiological pathways in which miRNAs are involved.

5. Conclusion

WRF during a hospital admission for acute HF was consistently associated with lower baseline levels of several circulating miRNAs. MiR-199a-3p, that is related to the prevention of kidney injury resulting from hypoxia and may control inflammation and apoptosis signaling, was the strongest predictor of WRF. A better understanding of the role of circulating miRNAs will be necessary to develop new diagnostic, prognostic and/or therapeutic tools in this setting.

Funding

This study was supported by a Grant from the Dutch Heart Foundation: Approaching Heart Failure By Translational Research Of RNA Mechanisms (ARENA). The PROTECT trial was supported by NovaCardia, a subsidiary of Merck.

Conflict of interest

N.B., J.M.T.M., E.S.O., E.L.V., M.A.E.V., P.V.D.M., R.A.D.B., P.V.D.H., D.S., and H.L.H. have nothing to disclose. A.A.V. has received speaker and consulting fees from Merck and NovaCardia. C.M.O.C is a consultant to Merck. D.J.V.V. has received Board Membership fees from Amgen, BG Medicine, Biocontrol, Johnson & Johnson, Novartis, Sorbent and Vifor. D.M.B is an employee of Merck. E.B. is co-founder and member of scientific advisory board of InterNA Technologies B.V., which develops microRNA therapeutics for cancer. No other conflicts were reported. G.C. and B.D. are employees of Momentum Research Inc, which was contracted to perform work on the project by Merck & Co, Inc. H.C.D was an employee of NovaCardia and a consultant to Merck. J.R.T. has received research funds and consulting fees from Merck, the producer of rolodipine for the conduct of this study and has also received research funds and consulting fees from Abbott, Amgen, Biogen Idec, Corthera, Cytokinetics, Johnson and Johnson/McKinsey, Novartis, Relypsa and Solvay for research in related areas. J.G.C. was on the Steering Committee for the study, served on the Advisory Board for MSD, and received payments for both. M.M. has received honoraria and reimbursements from NovaCardia, sponsors of the study, and from Merck, that purchased the rights to rolodipine after completion of the PROTECT pilot study. M.M.G. has received institutional research support and served on a scientific Advisory Board for Merck. P.P. has received honoraria from Merck. Y.M.P. has a minor stake (~5%) in University spin-off which commercializes IP in the field of biomarkers and microRNAs.
References

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.ijcard.2015.10.217.