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SUMMARY

Quantitative and qualitative protein characteristics
are regulated at genomic, transcriptomic, and post-
transcriptional levels. Here, we integrated in-depth
transcriptome and proteome analyses of liver tissues
from two rat strains to unravel the interactions within
and between these layers. We obtained peptide evi-
dence for 26,463 rat liver proteins. We validated
1,195 gene predictions, 83 splice events, 126 pro-
teins with nonsynonymous variants, and 20 isoforms
with nonsynonymous RNA editing. Quantitative RNA
sequencing and proteomics data correlate highly
between strains but poorly among each other, indi-
cating extensive nongenetic regulation. Our multi-
level analysis identified a genomic variant in the
promoter of the most differentially expressed gene
Cyp17a1, a previously reported top hit in genome-
wide association studies for human hypertension,
as a potential contributor to the hypertension pheno-
type in SHR rats. These results demonstrate the
power of and need for integrative analysis for under-
standing genetic control of molecular dynamics and
phenotypic diversity in a system-wide manner.

INTRODUCTION

Mass spectrometry (MS)-based proteomics and next-genera-

tion sequencing (NGS) are rapidly maturing techniques, each
Cell Re
enabling comprehensive measurements of gene products at a

system level (Altelaar et al., 2013; Cox and Mann, 2011; Soon

et al., 2013). Although MS and NGS are highly complementary,

they are still rarely applied integrated in large-scale studies

(Ning et al., 2012). State-of-the-art MS approaches can currently

identify over 10,000 proteins in a single experiment (Munoz et al.,

2011; Nagaraj et al., 2011), which brings the analysis of complete

proteomes within reach (Ahrens et al., 2010; Cox and Mann,

2011). However, as long as noncustomary protein databases

that are derived from (typically incomplete) reference genome

assemblies and annotations remain the sole source used for

MS spectra matching, true completeness will not be reached.

For example, protein isoforms arising from genetic polymor-

phisms, posttranscriptional events such as RNA-editing and

posttranslational modifications are largely missed (Jensen,

2004; Uhlen and Ponten, 2005).

Recent advances in NGS techniques, including whole genome

sequencing (WGS) and total RNA sequencing (RNA-seq) allow

for the generation of near-complete inventories of genetic varia-

tion in a system and its transcribed repertoire (Ozsolak and

Milos, 2011). However, from such analyses, the effects on the

proteins cannot be predicted with high confidence. For example,

the consequence of a single nucleotide variant (SNV) on the

coding capacity of a transcript can be predicted accurately,

but not the potential effect on the stability of the corresponding

protein. Systematic comparison of RNA-seq data with genomic

data reveals another layer of complexity. It has now been

convincingly demonstrated that certain transcripts are modified

by posttranscriptional editing, primarily by targeted A to I deam-

ination (Farajollahi and Maas, 2010). Most likely, all these types

of variation will not only affect the composition and function of
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a protein, but also influence expression levels. However, addi-

tional layers of translation control may dampen or completely

abolish such effects (Kleinman and Majewski, 2012; Lin et al.,

2012; Pickrell et al., 2012).

An integrative analysis of different data modalities, ideally

derived from samples of a single source, is required for correctly

deciphering the effects of genomic and transcriptomic variation

on molecular processes and cellular functioning. An example of

such data integration is the use of proteomic data derived from

MS in combination with complete genome data to improve

gene annotation (Jaffe et al., 2004; Renuse et al., 2011). This

approach has so far been sparsely performed and mainly in

organisms with smaller genomes (Merrihew et al., 2008; Venter

et al., 2011). On the other hand, integrative investigations of

messenger RNA levels and the proteins they encode reveal

only modest correlations, implying an unresolved level of

complexity in regulation of expression (Nesvizhskii et al., 2006;

Ning et al., 2012; Schwanhäusser et al., 2011; de Sousa Abreu

et al., 2009; Vogel and Marcotte, 2012).

For this study, we selected two rat inbred strains BN-Lx/Cub

(BN-Lx) and SHR/OlaIpcv (SHR) (Printz et al., 2003), representing

widely studied, renewable, and genetically homogeneous re-

sources. Both strains have previously been extensively charac-

terized at the genomic (Atanur et al., 2010; Gibbs et al., 2004)

and phenotypic level (Hubner et al., 2005; Johnson et al., 2009;

Pravenec and Kurtz, 2010; Simonis et al., 2012). The BN-Lx

strain is derived from, and thus very closely related to, the Brown

Norway (BN) strain. The latter strain was used for creating the

rat reference genome assembly (Gibbs et al., 2004) and is

commonly used as the protein reference data set in rat prote-

omics studies. The spontaneously hypertensive rat (SHR) is

more diverged from BN and is a widely used disease model for

hypertension studies. Whereas several blood pressure quantita-

tive trait loci (QTLs) have been mapped to the SHR genome, no

functional variants driving elevated blood pressure have been

validated to date. Here, we combine in-depth genomic, tran-

scriptomic, and proteomic analyses from inbred rats of two

different genetic backgrounds using the same sets of rat liver tis-

sues (Figure 1A). The liver is a large and relatively homogeneous

tissue source that is well known to be involved in both hyperten-

sion and metabolic syndrome - the phenotypes associated with

the SHR strain. We determine quantitative and qualitative molec-

ular dynamics at different functional levels and achieve a level of

proteome completeness by adding variation information derived

from WGS and RNA-seq data. These data allow us to apply a

genome-wide genetic-genomics approach (Jansen and Nap,

2001) to start understanding multilevel systems regulation and

to identify candidate genes that are potentially involved in the

hypertension phenotype of the SHR rat.

RESULTS AND DISCUSSION

Extension of the Rat Protein Database
In proteomics, tandem mass spectra are typically annotated by

searching against in silico-generated spectra based on a pub-

licly available protein database. For rat, such a database is

derived from the reference genome assembly of the BN rat

(Gibbs et al., 2004). To create a sample-specific database for
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MS peptide searching, we extended the existing RefSeq-based

peptide database by incorporating strain-specific peptides and

predicted peptides. We first obtained all strain-specific genetic

variation of the BN-Lx and SHR strains including single nucleo-

tide variants (SNVs) and in-frame indels.

Most genomic SNVs are located in the noncoding sequences,

and only the less frequent nonsynonymous variants in coding re-

gions give rise to altered amino acid sequences (Hurst et al.,

2009; Su et al., 2011; Valentine et al., 2006). We collected

10,493 nonsynonymous variants from recently generated high-

coverage WGS data of the BN-Lx and SHR genomes (Atanur

et al., 2010; Simonis et al., 2012), which are predicted to affect

6,187 protein isoforms derived from 4,566 genes. Furthermore,

to be able to detect in silico gene predictions using the prote-

omics data as evidence (Volkening et al., 2012), we added

44,993 GENSCAN gene predictions to our rat database (Burge

and Karlin, 1997).

Next, we performed RNA-seq (Table S1) on RNA extracted

from liver tissue of both rat strains (two males and two females

per strain). To this end, paired-end sequencing data were gener-

ated to construct de novo transcriptome assemblies for each

strain, In total, we found expression evidence for 18,116 known

genes (12,052 with fragments per kilobase of exon per million

fragments mapped [FPKM] >1), of which 2,612 (1,820 with

FPKM >1) overlap the nonsynonymous variants previously

detected by genome resequencing. Also, we identified 2,545

transcript splicing events affecting 1,015 genes. Although the

majority of the identified splice events (1,687) were detected in

both strains, 220 and 638 events were specific to BN-Lx and

SHR rats, respectively (Table S2). Independent RT-PCR-based

Sanger sequencing confirmed 74.1% (43 out of the 58 suc-

cessful PCR assays) of a randomly sampled subset as true

transcript isoforms (Table S3A). In addition, the same transcrip-

tome assembly data provided expression evidence for 2,903

GENSCAN predictions (Table S4).

The de novo assembled transcriptome data also allow for

characterization of transcriptomes at nucleotide resolution.

Because both BN-Lx and SHR strains are fully inbred, observed

changes at the transcript level are unlikely to be allele-specific

variation and can thus be attributed to technical artifacts (intro-

duced during sequencing or mapping) or to RNA editing (Farajol-

lahi and Maas, 2010). We find a total of 799 canonical (A to I or

C to T) RNA-editing variants (Table S5) of which 176 and 354

are specifically observed in BN-Lx and SHR, respectively. As ex-

pected, a large proportion of edits resides in the noncoding UTR

parts of transcripts or do not change the coding capacity of a

transcript. Yet, theymight be affecting RNA secondary structure,

stability, or miRNA binding. Only 196 edits were nonsynonymous

and therefore included in our protein database as potentially

detectable by MS. Of a subset of 169 candidate editing events

tested by independent RT-PCR-based amplicon resequencing,

most (104) showed reads corresponding to expected edited

transcripts, and another 12 likely represent germline variants

that missed detection during genome resequencing (Table S3B).

All peptide variants and isoforms derived from genome and

transcriptome variation and all newly predicted peptides based

on GENSCAN and de novo transcriptome assembly data were

appended to the Ensembl rat database (3.4.63) to create our
hors
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Figure 1. Integrated Proteomics, Genomics,

and Transcriptomics to Improve Sample-

Specific Protein Identification

(A) Schematic representation of the integrated

genome and proteome analysis of BN-Lx and SHR

rat liver using NGS and deep-proteome profiling.

(B) Bar plot showing the percentage of the current

reference database that is covered by the ex-

perimentally derived proteomes, with respect to

recent other proteomics efforts (Sun et al., 2010).

For BN-Lx and SHR, 39.7% of the Ensembl data-

base is represented (13,088 out of 32,971 entries;

release 3.4.63). The human liver proteome gener-

ated by the Chinese Human Liver Proteome

Profiling Consortium cover 13.5% of the IPI human

database (version 3.07; 7,050 out of 50,225

entries).

(C) Diagram displaying identified proteins specific

to BN-Lx (blue), SHR-specific proteins (red), and

proteins shared between both strains (green).

(D) Relative contribution (%) to the BN-Lx and SHR

rat proteomes (containing unique peptides) of each

additional layer of genomics- and transcriptomics-

derived protein variants.

See also Tables S1, S2, S3, S4, S5, S6, S8, S9, S10,

S11, and S12.
customized RAT_COMBINED database, which was used for all

subsequent proteomic analyses.

Proteomics Analysis
We generated proteomics data with the same liver tissues used

for RNA-seq. Each lysate was proteolyzed with five orthogonal

proteases, and the resulting 36 SCX fractions per digest were
Cell Reports 5, 1469–1478, De
analyzed with LC-MS/MS, cumulating in

180 runs per strain, yielding �12 million

tandem MS spectra. By using multiple

proteases, not only the identification and

sequence coverage of each protein in-

crease, but also the chance of capturing

evidence for predicted peptides/proteins

and consequences of RNA editing (Mo-

hammed et al., 2008; Peng et al., 2012;

Swaney et al., 2010). To ensure compre-

hensive coverage, two different but

complementary algorithms for spectra-

to-peptide assignment were applied.

First, Mascot search engine was used

for database searching. Next, remaining

unassigned spectra were processed

with PEAKS Studio 6.0 which incorpo-

rates a proprietary de novo sequencing

algorithm. The large amount of data

allowed us to apply a false discovery

rate (FDR) filter of 0% (q = 0) and

still identify over 2 million peptide-

spectral matches (PSMs), corresponding

to �175,000 nonredundant peptides

(Tables S6A and S6B). By performing a
merged BN-Lx and SHR data set search against our custom

RAT_COMBINED database, we obtained peptide evidence for

26,463 database entries. Of these, 18,322 are shared between

BN-Lx and SHR (Figure 1C; Table S7), whereas 3,009 and

5,132 appear strain specific for SHR and BN-Lx, respectively.

For comparison, we counted the number of identifications

matching entries in the Ensembl database (3.4.63), disregarding
cember 12, 2013 ª2013 The Authors 1471



the variants. Out of the 32,971 original database entries, 13,088

were matched, representing 39.7% of database entries. In

contrast, the most extensive liver proteome so far (the human

liver proteome generated by the Chinese Human Liver Proteome

Profiling Consortium) covers only 13.5% of the human IPI data-

base (version 3.07; 50,225 entries), illustrating the depth of our

data (Figure 1B; Table S6D). Over 86.5% of all proteins could

be supported by evidence of gene expression in the RNA-seq

data. As expected, identified peptides are evenly distributed

over the rat chromosomes, concordant with the distribution of

genes and transcripts (Figure S1A). The median coverage of all

proteins is 15.6% with roughly equal contributions from each

protease data set (Figure S1B).

Identification of Predicted Proteins and Protein
Isoforms
Approximately 5,700 unique peptides (Table S8A) provide exper-

imental evidence for 1,195 in silico predicted GENSCANproteins

(Table S7 and S8B). For 1,187 (99%) of those, RNA-seq data

support the observed expression. Fifty of them show best recip-

rocal hits with known mouse proteins, and another 32 with

known human proteins (Table S8C). Furthermore, we detect

N-terminally acetylated peptides for 69 of these 1,187 proteins,

with A, M, S, and T as their N-terminal residues (Table S8D) (Dor-

meyer et al., 2007; Starheim et al., 2012). N-terminal peptides

validate these putative genes by confirming their translational

start sites. A different class of proteins with largely uncertain ex-

istence is the short expressed proteins (SEPs) encoded by short

open reading frames (Slavoff et al., 2013). Of all peptides in our

data set, 0.25% could be assigned to 86 known SEPs and 37

identified SEPs (Figure S2; Tables S7 and S8B).

The proteomics data also provide support for 83 transcript

splicing events (0% FDR) that were previously not annotated

(Figure 1D; Tables S6C, S7, S10A, and S10D). From all predicted

proteins and splice isoform identifications, 309 and 15 respec-

tively were unique for BN-Lx, and 193 and 13 were specific to

SHR (Table S6C).

Detection of Nonsynonymous Protein Variants
Next, we explored to what extent the addition of strain-specific

variants affected protein detectability and stability. Of the

uniquely assigned spectra, 3.5% did discriminate between

allele-specific protein isoforms. We detected 126 nonsynony-

mous variants in our proteomic data, 38 for BN-Lx, and 88 for

SHR (Tables S10A and S10B). By applying a 0% FDR cutoff,

we reassuringly did not find any BN-Lx variants in the SHR sam-

ples, and vice versa (Table S6C). The fact that only a portion of

nonsynonymous variants was confirmed by peptide-based evi-

dence can be explained by our experimental design in which

only genes expressed in the liver could be detected. Clearly,

the inclusion of allele-specific variants has a measurable impact

on protein discovery and results in more balanced peptide count

per strain. The latter is most notable for the SHR rat because its

genome is more diverged from the reference strain (BN).

We used SIFT and Polyphen2 to predict if nonsynonymous

SNVs could affect protein stability (Tables S9 and S11). Poten-

tially damaging mutations were clearly overrepresented in differ-

entially expressed proteins with nondifferential transcript levels
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(p < 0.002) (Table S11). This illustrates that nonconservative

and structural missense variants may have limited influence on

the abundance of a transcript yet can show a pronounced effect

on protein stability.

Peptide-Based Evidence for RNA Editing
To identify functional RNA-editing events, we mapped our pep-

tide spectra to the set of potential RNA-editing events. In total,

20 out of the 196 nonsynonymous editing events could be

confirmed by unique peptide-based evidence (Tables S6C, S9,

S10A, and S10C). Because unique peptide evidence needs to

overlap with the predicted editing site, many of the remaining

176 edits are likely missed because of incomplete coverage or

redundancy in peptide data. Whereas limitations in the MS tech-

nology obviously result in an underrepresentation of identified

RNA edits, MS still provides the best means to confirm the pres-

ence of such posttranscriptional modifications in the expressed

proteins. On the other hand, we cannot rule out a possibility that

the relatively low percentage of confirmed events is a true repre-

sentation of the actual level of posttranscriptional modifications

that make it to mature proteins. This may be due to negative

selection against modified mRNA molecules. The high level of

RNA sequencing coverage and the strict calling settings used

to define editing events make it unlikely that an overestimation

of editing events is introduced during the RNA sequencing pro-

cedure and analysis.

It is worth noting that our comparison of de novo assembled

and the annotated transcriptomes may not only reveal genetic

differences, transcript isoforms, and common edited sites.

Sequence and annotation imperfections within the current

assembly and gene build can also be detected because the pro-

teogenomics approach used in this study accounts for differ-

ences between observed and annotated transcriptome that

originate from both biological and technical sources. Also, we

emphasize that the de novo transcriptome assembly approach

should be supplemented by regular transcriptome profiling if

one aims to discover transcript variants that correspond to

low-abundance transcripts and low-frequency events. To this

end, we performed direct alignment of RNA-seq data to the

rat transcriptome (known proteins and GENSCAN predictions)

and predicted additional modifications of annotated transcripts

(Table S5).

Relation between Transcriptome and Proteome Levels
Next, we studied quantitative aspects by investigating the

abundance of mRNA and protein levels. Although being derived

from two different strains of rats, we observed a very high

correlation of liver mRNA between BN-Lx and SHR (r = 0.98).

Similarly, the correlation coefficient for protein expression be-

tweenBN-Lx andSHR is also remarkably high (r = 0.94) (Figure 2),

providing confidence in our quantification strategy based on

spectral counts.

Next, we sought to define a correlation between mRNA and

protein expression levels in our data. Making a direct correlation

between mRNA and protein levels is hampered by the fact that

in peptide-based proteomics many proteins contain similar

peptide sequences. It is therefore hard to assign any of the

shared peptides unambiguously to a protein, the so-called
hors
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Figure 2. Global Correlation Plots Displaying the Complexity of mRNA and Protein Abundance

(A) The top two panels display the high correlations between BN-Lx and SHR mRNA (left, r = 0.98) and protein levels (right, r = 0.94), estimated using log10

normalized spectral counts (Log10SAF) and normalized RNA seq counts (Log10FPKM). The bottom two panels show the poor correlations between mRNA and

protein abundance for BN-Lx (r = 0.43) and SHR (r = 0.42), respectively.

(B) Scatterplot depicting the correlation between experimentally determined gene-specificmRNA to protein abundance conversion factors as calculated for both

BN-Lx and SHR (r = 0.88).

See also Table S15.
protein-inference problem (Grobei et al., 2009; Nesvizhskii and

Aebersold, 2005). Consequently, it is hard to integrate the

quantitative measurements, which are necessarily restricted to

peptides, to a protein measurement. Still, numerous studies

conclude that the global correlation between mRNA and protein

is certainly not linear and often an r of 0.4–0.5 is reported (Ning

et al., 2012; de Sousa Abreu et al., 2009; Vogel and Marcotte,

2012). Such findings are corroborated by results that show that

indeed only part of the variation in the protein levels can be ex-

plained by mRNA levels (Schwanhäusser et al., 2011). Here,

we use a spectra-count method for quantification of protein

levels. We use data derived from five different proteolytic en-

zymes, which is sufficient to exclude a proteolytic digest-specific

bias (Peng et al., 2012). Although we did identify unique peptides

per protein (Table S12), we chose to take the total number of

PSMs for every peptide matching a protein as a measurement

of its abundance to increase the quantitative resolution per pro-

tein. Subsequently, we determined the proteome-transcriptome

correlation for BN-Lx and SHR to be r = 0.43 and 0.42, respec-

tively (Figure 2A). This correlation is thus weak, albeit in line

with the previous studies in other systems. Based on these quan-

titative comparisons, we also found that 30 UTR expression

levels correlate increasingly better with protein levels (r = 0.54)

than do 50 UTR levels (r = 0.43) or reads derived from the coding

sequence (r = 0.47) (Figures S3C–S3E). We speculate that the
Cell Re
abundance of 30 UTR reads depends on transcript integrity and

reflects both transcript count and stability. Transcript levels

could also be reproducibly converted to predicted protein levels

using a gene-specific conversion factor, which showed high cor-

relation between the two strains (r = 0.88) (Figure 2B; Table S15).

The high correlation between strains for this gene-specific factor

illustrates the conservation of quantitative mRNA levels in rela-

tion to protein levels, independent of intermediate (less under-

stood) levels of expression regulation. Although the conversion

factor cannot be analyzed in-depth within the scope of this

article, we postulate that translation efficiency, RNA, and protein

degradation (and thus stability) are likely to play an important

role. The top 100 proteins with the lowest and highest conversion

factors were subjected to gene ontology (GO) overrepresenta-

tion analysis. We observed a trend in cellular localization toward

cytoskeleton (highest 100) or the membrane (lowest 100),

although the observations were not significant (Figure S3B;

Table S15). We can only speculate that the conversion factor

appears to be protein specific and conserved between strains.

This factor combines the aforementioned levels of gene expres-

sion regulation in one value. One particular group of proteins

appears to behave differently, representing the family of a2u-

globulins (known as rat major urinary proteins; Figures S3A

and S3B). Unfortunately, none of these proteins could be identi-

fied by unique peptides due to high protein sequence homology
ports 5, 1469–1478, December 12, 2013 ª2013 The Authors 1473
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Figure 3. Gene-Centric Strain-to-Strain Com-

parison of Significantly Differentially Ex-

pressed Genes

(A) Genes in BN-Lx and SHR with significantly

deviating mRNA levels (blue dots; n = 59) or mRNA

and protein levels (red dots; n = 54) are highlighted.

Gene names marked by an asterisk are based

on GENSCAN blast predictions derived from

the closest predicted homology to human and

mouse genes. Genes belonging to the CYP450

superfamily of catalytic enzymes are in bold and

genes associated with hypertension in human or rat

literature (Hao2, Serpina3m, Cyp8b1, and Cyp17a1)

are underscored.

(B) Western blot performed with liver tissues from

five animals each for BN-Lx and SHR. Both Cyp17a1

and Hao2 are downregulated in all the biological

replicates in the SHR strain compared to BN-Lx,

consistent with the proteomics data. Actin was used

as a loading control.

See also Tables S7 and S13.
within this class of genes. Therefore, although this class stands

out in the quantitative comparisons, absolute differences be-

tween BN-Lx and SHR cannot be determined with high confi-

dence at this point.

Genetic Control of Quantitative Proteome
Characteristics
To determine the effects of genetic variation on quantitative

transcriptome and proteome characteristics, we compared the

difference of mRNA and protein expression between the two

rat strains. First, we filtered our quantitative data with more strin-

gent criteria retaining only genes quantifiable at both the protein

and the RNA level (reliable expression level estimates by Cuffdiff

and nonzero SAF counts). This allowed us to compare 6,743

genes (Figure 3A; Table S13), 113 of which were differentially ex-

pressed at the RNA level (at least 2-fold change in expression;

and q < 0.01) and 205 at the protein level (at least 2-fold change

and q = 0). Themajority of the differentially expressed transcripts

(59/113) do not show comparable changes at proteomics level.

This group of proteins likely acquires stable expression through

regulation of at the level of translation or through proteostasis.

A small proportion of the genes (13/113) shows discordant
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behavior with opposite expression pat-

terns for transcripts and proteins. Both

groups do not show any overrepresenta-

tion in GO terms or pathways. The limited

number of genes with significantly altered

expression indicates the high global

genome and proteome similarity between

the two inbred rat strains. However, it also

illustrates that interindividual differences

may be in the details, such as repre-

sented by changes in posttranslational

protein modifications and protein net-

works (Altelaar et al., 2013; Bensimon

et al., 2012). Finally, 41 out of the 113

differential genes show strain-specific
expression changes that are consistent between transcriptome

and proteome (Figure 3A; Table S13). The products of these 41

genes relate to catalytic activity (28 genes, GO-term enrichment

p value 1.4e-5) and metabolic pathways (13 genes, p = 2.6e-4).

A Germline Promoter Variant Deregulates Cyp17a1
Expression in Spontaneously Hypertensive Rats
This set of 41 genes likely underlies some of the phenotypic dif-

ferences known to exist between BN-Lx and SHR rats, like spon-

taneous hypertension (Okamoto and Aoki, 1963) and metabolic

syndrome (Aitman et al., 1997, 1999). We therefore investigated

which genes were previously reported to be associated with hy-

pertension in human or rat. First, three out of the 41 genes that

are differential at both the mRNA and protein level were found

to be associated with hypertension in the rat. Those three genes,

Hao2 (Lee et al., 2003), Serpina3m, and Cyp8b1 (Kinoshita et al.,

2011), came out as top hits when studying SHR (-related)

strains or a panel of congenic rat strains to define candidates

for hypertension. All three genes also overlap known blood pres-

sure QTLs in the rat (Dwinell et al., 2009), and two of them

(Serpina3m and Hao2) show a very strong connection to the

SHR genotype based on eQTL data derived from the BXH/HXB
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Cyp17a1 for BN-Lx (blue) and SHR (red). The transcript is positioned on the reverse strand. Both the annotated transcription start site (TSS, black arrow) and the
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(B) Expression QTL analysis of Cyp17a1 expression in the HXB/BXH recombinant inbred panel. Gene expression is plotted based on RNA-seq for the ancestral

strains (n = 5) and the RI strains split by ancestral haplotype at the Cyp17a1 locus (n = 16 for BN-Lx and n = 14 for SHR).

(C) Zoomed-in view of the actual TSS, with the position of the germline T/C SNV shown. The dashed box (gray) shows the core part of the forkhead box DNA

binding motif.

(D) Consensus forkhead box DNA binding motif, obtained from the JASPAR database FOXA1 motif (Sandelin et al., 2004).

See also Table S14.
recombinant inbred panel (founded by the BN-Lx and SHR

strains) (Figure S4A–S4C). This implies that the gene expression

regulation of Serpina3m and Hao2 is regulated in cis and thus

strongly related to the genotype of the SHR strain. A fourth

gene, Cyp17a1, was identified as a top hit in relation to blood

pressure and hypertension in human genome-wide association

studies on European, Japanese, and Chinese individuals (Li

et al., 2013; Liu et al., 2011; Newton-Cheh et al., 2009; Takeuchi

et al., 2010) (Table S14A). Cyp17a1 also overlaps a blood pres-

sure QTL in the rat and shows the most extreme downregulation

in SHR compared to BN-Lx in our analysis (Figure 3A). The differ-

ential expression of Hao2 and Cyp17a1 was verified indepen-

dently by western blot, using liver samples of five animals from

each strain (Figure 3B). Like Cyp8b1, Cyp17a1 is a member of

the cytochrome P450 (CYP450) superfamily (Danielson, 2002)

of catalytic enzymes that mediate monooxygenase reactions

and regulate drugmetabolism. Interestingly, mutations in human

CYP17A1 are known to lead to congenital adrenal hyperplasia
Cell Re
due to 17 alpha-hydroxylase deficiency, which results in hypo-

gonadism, pseudohermaphroditism, and severe hypertension

(Biglieri, 1997; Biglieri et al., 1966; Geller et al., 1997; Goldsmith

et al., 1967). To determine the genetic basis of the Cyp17a1

expression differences between BN-Lx and SHR, we sought

for genetic variants in the annotated exons and flanking regula-

tory sequences, but none were present. Exploration of eQTL

data, however, revealed a very strong cis-effect (Figure 4B;

Table S14B), indicating that the measured expression difference

is due to genetic variants in the gene itself or in neighboring

regulatory elements. Upon closer inspection of the RNA-seq

data, we found that the transcriptional start site (TSS) of the

Cyp17a1 gene was incorrectly annotated and resides approxi-

mately 2 kb upstream of the currently annotated most 50 exon
(Figure 4A). The true location of the promoter could be confirmed

by H3K4me3 ChIP data that show specific enrichment of this

active promoter mark surrounding the nucleosome-free region

of the unannotated TSS (Figure S4D). Interestingly, this promoter
ports 5, 1469–1478, December 12, 2013 ª2013 The Authors 1475



does harbor a germline variant in SHR that disrupts the core part

of an evolutionary conserved forkhead-box DNA binding domain

(Figures 4C and 4D) (Sandelin et al., 2004), specifically deregu-

lating transcription in SHR (Figure 4A). Because this expression

trait is regulated in cis and this SNV is the only germline variant

in the vicinity of the gene, our integrated genomics, transcrip-

tomics, and proteomics approach has most likely identified the

source of expression variation. The overlap with the RGD blood

pressure QTL (http://rgd.mcw.edu/), top GWAS loci in humans,

and known link to hypertension as a result of renal hyperplasia

in patients carrying CYP17A1 mutations are good indications

that this promoter mutation in the SHR Cyp17a1 gene contrib-

utes to the observed hypertensive phenotype of SHR rats.

Conclusions
Technological advances in both the proteomics and the

sequencing community now provide the ability to discriminate

genetic and posttranscriptional polymorphisms at the proteome

level. These advances also allow improved quantitation of gene

expression, which is generally restricted by the imprecise proxy

of transcriptome data alone. We here show that the synergistic

use of genomic, transcriptomic, and proteomic technologies

significantly improves the information load that can be gained

from proteomics as well as genomics efforts. By matching

deep MS-based proteomics to a personalized database built

from a sample-specific genome and transcriptome, we identify

thousands of peptides that would otherwise escape identifica-

tion. We believe that future efforts on both platforms benefit

largely from our proof-of-concept approach, which brings

integrated proteogenomics to a higher level. To highlight the

strength of this approach, we present a link of a genomic variant

in the Cyp17a1 gene promoter and associate it with the hyper-

tension phenotype of the extensively studied SHR rats.

EXPERIMENTAL PROCEDURES

An extended version of the experimental procedures can be found in the Sup-

plemental Information.

Custom Rat Protein Database Construction

We modified and appended the Ensembl (Birney et al., 2004; Curwen et al.,

2004; Hubbard et al., 2002) rat protein FASTA (build 3.4.63), whichwas derived

from the reference (BN) genome assembly, with DNA resequencing and

RNA-seq data of the BN-Lx and SHR strains. Single nucleotide variants and in-

dels were obtained from previous genome sequencing efforts (Atanur et al.,

2010; Simonis et al., 2012). RNA was isolated from liver tissues of 6-week-

old inbred BN-Lx/Cub and SHR/OlaIpcv rats. SOLiD RNA-seq libraries were

prepared with ribosomal RNA depleted RNA and sequenced on the SOLiD

V4 system. Next, we used CLC assembly cell version 4 (CLC Bio) to de novo

assemble each rat liver transcriptome.MergedBN-Lx andSHR transcriptomes

were mapped against the reference genome assembly using BLAT software

(Kent, 2002). Splicing and RNA-editing events were detected using alignments

between the assembled transcriptomeandgenomeandcompared to their cor-

responding proteins. For all nonsynonymous genomic and transcriptome var-

iants, individual entries were added to the extended protein search database.

Also, we included 44,993 GENSCAN gene predictions of which 17,100

(FPKM >0.1) or 4,998 (FPKM >1.0) show evidence of expression.

Quantification of Transcriptome Data and Identification of eQTLs

To quantify expression differences, RNA-seq data for each sample were

aligned to reference genome using TopHat2. Expressed and differentially ex-
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pressed genes were defined by Cuffdiff using all four transcriptomes per strain

(Trapnell et al., 2012). Determination of eQTLs in the HXB/BXH recombinant

inbred panel consisting of 30 rat strains was performed exactly as previously

described (Heinig et al., 2010).

Strong Cation Exchange Chromatography

After sonication and centrifugation, liver tissue lysates (300 mg each) were pro-

teolyzed using trypsin, LysC, GluC, AspN, and chymotrypsin. After desalting,

peptides were fractionated using a strong cation exchange (SCX) column

(Zorbax BioSCX-Series II; 0.8 mm inner diameter 3 50 mm length, 3.5 mm),

and 36 fractions were collected per digest.

Mass Spectrometry Analysis

The first 26 fractions were analyzed with an Agilent 1290 Infinity (Agilent Tech-

nologies) LC, operating in reverse-phase (C18) mode, coupled to a TripleTOF

5600 (AB Sciex). MS spectra (350–1,250 m/z) were acquired in high-resolution

mode (R > 30,000), whereas MS2 in high-sensitivity mode (R > 15 000). The

next ten fractions were analyzed with a Proxeon EASY-nLC 1000 (Thermo

Scientific) operating in reverse phase (C18) and connected to an LTQ-Orbitrap

Velos (Thermo Fisher Scientific). For MS analysis, MS spectra (350–1,500 m/z)

were acquired at a resolution of 30,000 and for MS2, R = 7,500.

Protein Database Searching

Peak lists (MGFs) were submitted to the Mascot (version 2.3) via Proteome

Discoverer version 1.3 (Thermo Fisher Scientific) and searched against RAT_

COMBINED with the respective proteases chosen. Peptide tolerance was

50 ppm, and MS/MS tolerance was 0.1 Da (TOF), 0.02 Da (Orbitrap), and

0.5 Da (ion trap). All PSMs were validated with Percolator (Käll et al., 2007)

based on q = 0 (0% FDR). Only PSMs ranked first by the search engine with

at least six amino acids were kept. Unmatched spectra were exported for anal-

ysis with PEAKS Studio (version 6.0). Peak lists were filtered with a quality

value of 0.65, followed by a tag database search. The maximum allowed var-

iable PTM per peptide was set to 3. De novo interpreted PSMswere submitted

to PEAKS DB database matching, allowing semienzymatic specificity and a

maximum cleavage per peptide of 2. The FDR was estimated using a concat-

enated decoy database and according to a threshold of 0.0%.

Quantitative Comparison of Proteome and Transcriptome Data

To combine quantitative data from all methods, we developed a relational

database schema (Figure S8) for data storage. The database schema was

converted to Java (Java SE 7, Oracle) entities, using Java Persistence API

(JPA version 2) implemented in EclipseLink version 2.3.2 (http://www.

eclipse.org/eclipselink), with the tools provided in Netbeans IDE 7.3 (http://

www.netbeans.org). The database used was MySQL version 5.5 (Oracle).

ACCESSION NUMBERS

The ProteomeXchange (Vizcaı́no et al., 2013) accession number for the MS

data reported in this paper is PXD000131. The Sequence Read Archive acces-

sion numbers for the DNA data are ERP001355 (BN-Lx genome), ERP001371

(SHR genome), and ERP000510 (BN reference genome). RNA sequencing

data were stored in ArrayExpress under the accession number E-MTAB-1666.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and fifteen tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2013.10.041.
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Vizcaı́no, J.A., Côté, R.G., Csordas, A., Dianes, J.A., Fabregat, A., Foster, J.M.,

Griss, J., Alpi, E., Birim, M., Contell, J., et al. (2013). The PRoteomics

IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic

Acids Res. 41 (Database issue), D1063–D1069.

Vogel, C., and Marcotte, E.M. (2012). Insights into the regulation of protein

abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet.

13, 227–232.

Volkening, J.D., Bailey, D.J., Rose, C.M., Grimsrud, P.A., Howes-Podoll, M.,

Venkateshwaran, M., Westphall, M.S., Ané, J.-M., Coon, J.J., and Sussman,
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