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Chapter 13

Evaluation of MeDIP-Chip in the Context of Whole-Genome 
Bisulfite Sequencing (WGBS-Seq) in Arabidopsis

René Wardenaar, Haiyin Liu, Vincent Colot, Maria Colomé-Tatché,  
and Frank Johannes

Abstract

Studies of DNA methylation in Arabidopsis have rapidly advanced from the analysis of a single reference 
accession to investigations of large populations. The goal of emerging population studies is to detect dif-
ferentially methylated regions (DMRs) at the genome-wide scale, and to relate this variation to gene 
expression and phenotypic diversity.

Whole-genome bisulfite sequencing (WGBS-seq) has established itself as a gold standard in DNA 
methylation analysis due to its high accuracy and single cytosine measurement resolution. However, scal-
ing up the use of this technology for large population studies is currently not only cost prohibitive but also 
poses nontrivial bioinformatic challenges. If the end-point of the study is to detect DMRs at the level of 
several hundred base pairs rather than at the level of single cytosines, low-resolution array-based methods, 
such as MeDIP-chip, may be entirely sufficient. However, the trade-off between measurement accuracy 
and experimental/analytical practicality needs to be weighted carefully. To help make such experimental 
choices, we conducted a side-by-side comparison between the popular dual-channel MeDIP-chip 
Nimblegen technology and Illumina WGBS-seq in two independent Arabidopsis lines.

Our analysis shows that MeDIP-chip performs reasonably well in detecting DNA methylation at 
probe-level resolution, yielding a genome-wide combined false-positive and false-negative rate of about 
0.21. However, detection can be susceptible to strong signal distortions resulting from a combination of 
dye bias and the CG content of effectively unmethylated genomic regions. We show that these issues can 
be easily bypassed by taking appropriate data preparation steps and applying suitable analysis tools.

We conclude that MeDIP-chip is a reasonable alternative to WGBS-seq in emerging Arabidopsis 
population epigenetic studies.

Key words DNA methylation, MeDIP-chip, Whole-genome bisulfite sequencing, Dye bias, 
Arabidopsis, Population epigenetics, Epigenomics

1  �Introduction

DNA methylation is an epigenetic modification that involves the 
addition of a methyl group to the five position of the cytosine 
pyrimidine ring. In most animals and plants, this modification has 
a central role in the regulation of gene expression and in the 
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silencing of transposable elements [1]. Because of its important 
biological functions, there have been substantial efforts to charac-
terize the complete DNA methylomes of various organisms [2].

In the model plant Arabidopsis, the first whole-genome DNA 
methylation analysis used single-channel Affymetrix and dual-
channel Nimblegen tiling arrays [3, 4]. These studies relied on 
methylation-dependent immunoprecipitation techniques followed 
by hybridization to high-density microarray chips (MeDIP-chip), 
and achieved a resolution of 35 and 220 bp, respectively. This work 
was instrumental in providing the first picture of the distribution of 
DNA methylation and its relationship with known sequence anno-
tation in this species. A more detailed view was later obtained by 
several studies employing Illumina whole-genome bisulfite 
sequencing (WGBS-seq [5, 6]). WGBS-seq combines bisulfite 
conversion of DNA with next-generation sequencing (NGS) tech-
nologies and provides single cytosine resolution.

While the above-mentioned studies focused on the DNA 
methylome of a single reference plant, more recent work has begun 
to document interindividual variation in DNA methylation in large 
populations. The ultimate aim is to relate this type of epigenetic 
variation to phenotypic diversity, and to ask broader questions 
about the role of epigenetics in adaptive evolution. A first step in 
this direction was recently taken by Schmitz et al. [7] and Becker 
et al. [8]. These authors performed WGBS-seq on 8–12 Arabidopsis 
lines and quantified the frequency and distribution of single meth-
ylation polymorphisms (SMPs) as well as differentially methylated 
regions (DMRs). These experiments generated roughly 200–
500 GB of data and required construction of extensive data pipe-
lines. Scaling up the use of WGBS-seq to even larger samples poses 
nontrivial bioinformatic challenges that range from data storage to 
downstream computation analysis. These challenges can hinder the 
routine application of this technology for future population epi-
genetic studies.

A viable alternative is to restrict DNA methylation analysis to 
the detection of DMRs, which typically range between 10 and 
1,000 bp in length. In Arabidopsis as in other species DMRs appear 
to be functionally more important than SMPs [7–10] and appear 
to be a suitable unit of analysis. Focusing on DMRs has the impor-
tant advantage that array-based measurement technologies, such as 
MeDIP-chip, could be employed in place of WGBS-seq because 
they provide sufficient resolution. The use of array-based methods 
can substantially reduce the bioinformatic resources required to 
perform population epigenetic studies. Nonetheless, loss of mea-
surement accuracy resulting from hybridization compared to 
sequencing may present a significant drawback which not all 
researchers are willing to accept. Furthermore, it should be noted 
that unlike WGBS-seq, MeDIP-chip does not allow distinguishing 
between CG, CHG, and CHH methylation, a point which may be 
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important to consider in some instances. Hence, the trade-off 
between loss of measurement accuracy and experimental/analytical 
practicality needs to be weighted carefully. To help make such 
experimental choices we conducted a side-by-side comparison 
between the popular dual-channel MeDIP-chip Nimblegen tech-
nology and Illumina WGBS-seq. The workflow shown in Fig. 1 
serves as an outline of this chapter.

Our analysis shows that the dual-channel MeDIP-chip tech-
nology performs reasonably well in detection of probe-level DNA 
methylation, which is approximately the minimum resolution 
required for DMR detection. We estimate that MeDIP-chip yields 
a combined false-positive and false-negative rate of 0.21 genome-
wide. However, we also find that detection can be critically depen-
dent on prior data preparation steps, signal distortions arising from 
dye biases, and the statistical method used for detection. Based on 
our results, we make several simple but important recommenda-
tions regarding the experimental implementation of MeDIP-chip 
for population epigenetic studies (see Note 1–3).

Fig. 1 Workflow evaluation MeDIP-chip

Evaluation of MeDIP-Chip in the Context of Whole-Genome Bisulfite Sequencing…



206

2  �Data Sets and Data Preparation

In this chapter we consider DNA methylation data from two dif-
ferent epigenetic recombinant inbred lines (epiRILs; R60 and 
R202 [11]). The DNA methylomes of each epiRIL were measured 
using dual-channel Nimblegen MeDIP-chip and Illumina WGBS-
seq [12]. This section provides a brief overview of these two mea-
surement technologies as well as key data preparation steps.

Methylated DNA immunoprecipitation (MeDIP) is a large-scale 
purification technique used for the enrichment of methylated DNA 
fragments. This technique uses antibodies specific to methylated 
cytosines in order to separate methylated DNA fragments from 
unmethylated DNA fragments. Following this separation proce-
dure the methylated fragments can either be hybridized to a tilling 
array (MeDIP-chip [13]) or sequenced (MeDIP-seq [14]) in order 
to assess the methylation status of the genome under consider-
ation. The application of MeDIP-chip to the two epiRILs under 
consideration involved several experimental steps which are dis-
cussed in short in this paragraph. A more extensive description of 
the protocol used to obtain MeDIP-chip data described in this 
chapter is given by Cortijo et al. [15].

	 1.	Extraction and fragmentation—DNA was extracted from aer-
ial parts of 3-week-old Arabidopsis plants using a standard 
extraction kit (Qiagen DNeasy plant Maxi kit). Extracted DNA 
was fragmented using sonication. Sonication produced frag-
ments with a size between 100 and 600 bp (verified with gel 
electrophoresis).

	 2.	Immunoprecipitation and amplification—After this fragmenta-
tion step, the DNA was denatured and anti-5mC antibody was 
added to the IP DNA pool, which recognizes specifically meth-
ylated cytosines in single-stranded DNA. Magnetic beads con-
taining binding sites for this antibody were then added to pull 
down (i.e., immunoprecipitate) methylated fragments. 
Following release of the antibody, both IP and input DNA 
fractions were amplified by PCR.

	 3.	Labeling and hybridization—The IP and input fractions were 
differentially labeled with two fluorescent dyes (Cy3 and Cy5) 
and hybridized to Nimblegen whole-genome Arabidopsis til-
ing arrays (3 × 720  K array) containing 711,320 isothermal 
probes. Depending on the CG content, these probes range 
from 50 to 75 nucleotides in length and have an inter-probe 
spacing of about 110 base pairs on average.

	 4.	Scanning the tiling array—After hybridization, the intensities 
of both dyes were obtained by scanning the tiling array. The 
scanner outputs two files with the raw intensities for each 

2.1  �MeDIP-Chip
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probe on the tiling array: one file with the IP signals and the 
other file with the input signals.

	 5.	Signal calculation—The IP and input signals were log trans-
formed and subtracted from each other (log2(IP) − log2(input)). 
Hence, probes with a low signal are from genomic regions that 
show low methylation levels, and those with a high signal are 
from genomic regions that show high methylation levels.

WGBS-seq is a NGS technology used to determine the DNA 
methylation status of single cytosines. In the case of WGBS-seq, 
unlike other NGS technologies, the DNA is treated with sodium 
bisulfite before sequencing. Sodium bisulfite is a chemical com-
pound that converts unmethylated cytosines into uracil [16, 17]. 
Knowing which cytosines have converted it is possible to deter-
mine which cytosines are methylated (not converted) and which 
ones are unmethylated (converted into U). After sequencing, the 
unmethylated cytosines appear as thymines. There are several ways 
of producing sequence libraries for WGBS-seq (see Ref. 18). The 
WGBS-seq data in this chapter was produced with a technique 
developed by Cokus et  al. [6]. Here we describe in short the 
procedure.

	 1.	Extraction and fragmentation—DNA was extracted from aer-
ial parts of 3-week-old Arabidopsis plants using standard 
extraction kit (Qiagen DNeasy plant Maxi kit). Extracted DNA 
was fragmented by sonication.

	 2.	Adapter ligation and size selection—A set of double-stranded 
adapter sequences was ligated to the fragmented DNA. These 
adapter sequences contained methylated adenine bases with 
DpnI restriction sites. The restriction sites are important for 
the removal of the first set of adapter sequences in one of the 
subsequent steps. Gel electrophoresis was used to obtain 
adapter-ligated fragments with an appropriate size.

	 3.	Bisulfite conversion and amplification—After the addition of 
the adapter sequences the sodium bisulfite conversion is per-
formed. During this step, unmethylated cytosines are changed 
into uracil. PCR was subsequently performed with the use of 
primers that were complementary to the converted adapter 
sequences.

	 4.	Removal of first adapter sequences and ligation sequencing 
adapters—After the first PCR amplification step the first set of 
adapters was removed using DpnI restriction enzymes. A new 
set of sequencing adapters was subsequently ligated to 
BS-converted DNA fragments.

	 5.	Size selection and amplification—Fragments with a size between 
120 and 170 bp were selected with the use of gel electropho-
resis, and a second and final PCR step was performed using 

2.2  Whole-Genome 
Bisulfite Sequencing
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primers complementary to the sequencing adapters to yield a 
sequencing library.

	 6.	Sequencing—Illumina sequencing technology (Illumina 1G 
Genome Analyzer) was used to produce read sequences with a 
length of 76 or 101 nt.

After sequencing, the reads need to be mapped (or aligned) 
to a reference genome in order to infer the methylation status 
of the cytosines of the genome under consideration. However, 
mapping these converted sequences is not straightforward 
since unmethylated cytosines will result in mismatches with 
the reference genome (i.e., they appear as thymines). To cir-
cumvent this issue several programs have been developed that 
first convert the reference genome into a three-letter genome 
(i.e., all cytosines are changed into thymines; in silico [19]). 
The remaining cytosines of the read sequences also need to be 
changed into thymines before mapping. The in silico-treated 
read sequences are subsequently mapped to this three-letter 
reference genome. Once the mapping has been performed, 
methylation status can be inferred using the original sequence 
of the reference genome and the read. A thymine (read) 
mapped to a cytosine (reference) is an unmethylated cytosine. 
A cytosine mapped to a cytosine is a methylated cytosine. We 
utilized BS Seeker [20] for the mapping of the read sequences. 
BS Seeker is a python-based open-source mapping program 
for the alignment of bisulfite-treated sequences. The analysis 
includes preprocessing of the reads prior to alignment, the 
alignment itself, and quality analysis of the data. The steps are 
described further below. More details of the mapping of the 
reads can be found elsewhere [12].

	 7.	Removal of adapter parts—When a DNA fragment is shorter 
than the read sequence a part of the adapter sequence will also 
be sequenced. The adapter sequence was added artificially and 
does not match with the reference genome. We therefore 
removed this part using a sliding window approach. The part 
that overlapped with the known adapter sequence was removed.

	 8.	Removal of short reads—The removal of the adapter sequences 
resulted in some cases in reads with a length smaller than 30 
nucleotides. These short reads are more difficult to map and 
were therefore removed. The proportion of short reads was in 
our case quite small and therefore the final read coverage was 
barely affected.

	 9.	Removal of duplicated reads—Duplicated reads were removed 
in the final preprocessing step because they were likely pro-
duced during PCR amplification and were therefore not 
informative.

	10.	Alignment to reference genome—After these preprocessing 
steps the reads were mapped to a reference genome (TAIR 10) 
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with the use of BS Seeker. After mapping the obtained average 
genome coverage was 29 and 27× for epiRIL 60 and 202, 
respectively (both strands combined).

	11.	Determination conversion rate—One important step in the 
quality analysis of the data is to determine the (bisulfite) con-
version rate. The conversion rate, which is the percentage of 
unmethylated cytosines that effectively changed into uracil, 
was determined for both epiRILs after mapping. The conver-
sion rates were determined with the information of reads that 
were mapped to chloroplast DNA. The chloroplast DNA is 
known to be unmethylated and therefore any detected methyl-
ated cytosine is considered to be a non-converted unmethyl-
ated cytosine. Both epiRILs showed a conversion rate above 
99 % which indicates that the data is of good quality.

One of the major differences between MeDIP-chip and WGBS-seq 
is mapping resolution. WGBS-seq can interrogate the methylation 
status of individual cytosines while MeDIP-chip achieves a resolu-
tion of about 165 bps. In order to facilitate a meaningful compari-
son between the two technologies, we converted the WGBS-seq 
data into a format that is comparable to that of MeDIP-chip. To 
achieve this we calculated the proportion of methylation calls in 
windows of 165 bps centered at the probe sequence (Fig. 2). By 
methylation calls we mean the individual methylation calls of each 
read sequence. This results in a signal ranging from zero to one. 
This signal is afterwards normalized for the number of cytosines in 
the probe window. Let C j

m  denote the number of cytosines that 
have been called methylated in the j th window, C j

u  the number of 

2.3  Data Conversion 
and Normalization

Fig. 2 Calculation of whole-genome bisulfite sequencing signals. The methylation calls within the window 
(gray) are used to calculate a normalized whole-genome bisulfite sequencing signal (see formula)
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cytosines that have been called unmethylated in the j th window, Rj 
the total number of cytosines in the j th window according to the 
reference genome, and Rmax the maximum number of cytosines 
across all windows. The converted and normalized WGBS-seq 
signal can be calculated as

WGBSsig( )
max

.j
C j

m

C j
m C j

u
Rj

R
=

+
×

We selected high-quality data for the analysis described in this 
chapter. In case of the WGBS-seq probe windows, we only selected 
windows with 35 or more cytosines, with at least half of the cyto-
sines being covered by one or more read sequences. In case of the 
MeDIP-chip data we only selected probes with a conservation 
score smaller or equal to 85. The conservation score of a probe 
indicates the uniqueness of a probe sequence. These scores were 
obtained by performing a blast search. Scores are percentage of 
identity with the second best hit (score range 45–100). The best 
hit is with the genomic location for which the probe was designed. 
Probes with a high conservation score are more likely to cause 
cross-hybridization problems. As shown in Fig.  3, removal of 
probes with a high conservation score has a drastic impact on the 
MeDIP signal distribution, as they typically show signal intensities 
similar to probes that correspond to genomic regions with high 
methylation levels. See Note 1 for recommendations concerning 
the quality of the data.

Analysis was performed on probes (i.e., probe windows) that 
were present in both data sets (MeDIP-chip and WGBS-seq signal 

Fig. 3 Impact of removing probes with a high conservation score on probe signal distribution. Probes with a 
high conservation score (dark gray) typically show signal intensities similar to probes that correspond to 
genomic regions with high methylation levels
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data). This yielded 551,688 and 550,676 high-quality probe 
windows in total, covering approximately 77.6 and 77.4 % of the 
genomes of R60 and R202, respectively. In case of the MeDIP-
chip data a total of two dye-swap experiments were performed for 
each epiRIL. The log-transformed signals were also averaged over 
the two dye-swap experiments which resulted into three MeDIP-
chip data sets:

●● G/R data: IP labeled green (Cy3, G) and input labeled red 
(Cy5, R).

●● R/G data: IP labeled red (Cy5, R) and input labeled green 
(Cy3, G).

●● DS data: Average of G/R and R/G data (dye-swap data).

Finally, quantile normalization was applied to bring these three 
data sets to a common scale [21]. Figure 4 displays a density histo-
gram of the WGBS-seq signal for the two epiRIL experiments 
(R60 and R202) and the MeDIP-chip signal (DS).

The analysis described in this chapter was performed using R [22]. 
R is a command-line software environment for statistical computing 
and graphics. The Hidden Markov Model (HMM) for probe clas-
sification was programmed in C++ [15].

2.4  �Software

Fig. 4 Density histogram of WGBS-seq signals and MeDIP-chip signals following data conversion and normal-
ization. (a) WGBS-seq signal distribution. (b) MeDIP-chip signal distribution

Evaluation of MeDIP-Chip in the Context of Whole-Genome Bisulfite Sequencing…
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3  �Results

Since the WGBS-seq signal provides a measure of the proportion 
of methylated cytosines in a given probe window, we were able to 
assess the dynamic range of the MeDIP-chip technology directly 
by empirical comparison. To achieve this we calculated the median 
MeDIP-chip signal for sliding windows along the entire WGBS-
seq signal range (Window size: 0.05; step size: 0.01; Fig. 5a). We 
find that MeDIP-chip exhibits good sensitivity for low-to-
intermediate methylation levels (WGBS-seq range: 0.00 to ~0.13). 
In this low-to-intermediate range, there is a nearly linear relationship 
between the WGBS-seq signal and the MeDIP median signal, but 
the MeDIP-chip sensitivity falls off quickly and saturates at a 
WGBS-seq signal value of about 0.28. Above this point, MeDIP-
chip is effectively unable to differentiate between methylation 
levels. However, in R60 and R202 this saturation effect affects 
only a relatively small number of probe windows, 0.19 % (N = 1,056) 
and 0.22 % (N = 1,220) of all regions genome-wide, and 0.58 and 
0.67 % of all methylated regions (see Table 1), respectively. Signal 
saturation should therefore not be a matter of great concern in the 
analysis of the Arabidopsis methylome. Similar conclusions can be 
reached when considering the MeDIP signal on its original scale 
(data not shown), rather than on the log-transformed scale, which 
indicates that saturation is not caused by scaling issues.

3.1  Assessment  
of MeDIP-Chip 
Dynamic Range

Fig. 5 Median and variance of the MeDIP signal along the entire WGBS-seq signal range. Median MeDIP signal 
(a) and variance MeDIP signal (b) for sliding window along the entire WGBS-seq signal range. The G/R data 
show less sensitivity for low-to-intermediate WGBS-seq signals and also show a higher variance compared to 
the R/G data
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Our analysis also indicates that there are clear dye-related 
differences in the MeDIP median signal. The R/G data appears to 
respond more sensitively to changes in WGBS-seq methylation lev-
els compared with the G/R and the DS data (Fig. 5a). While these 
dye differences disappear at the saturation point (WGBS-seq sig-
nal ~ 0.28), they are most prominent in the optimal dynamic range. 
This divergence is even more severe when we consider the MeDIP 
signal variance across the complete WGBS-seq range using the 
same sliding window approach (Fig. 5b). Ideally, the signal vari-
ance should be low and constant across methylation levels. 
Figure 5b illustrates that this is clearly not the case: the MeDIP 
signal variance is largest within the optimal dynamic range but 
decreases rapidly with increasing methylation levels. Notably, the 
G/R data displays a 1.20 (R60)- and a 1.28 (R202)-fold increase 
in signal variance (on average) relative to the R/G data suggesting 
that it is substantially noisier, and the dye-swap (DS) fails to correct 
this bias. This latter observation is contrary to what is typically seen 
in expression microarrays where dye-swaps have proved to be an 
effective strategy [23, 24]. See Note 2 for recommendations con-
cerning the labeling of the IP and input DNA.

From a data analysis standpoint, the classification of individual 
probes according to their underlying methylation status (i.e., 
methylated or unmethylated) is critically dependent on the vari-
ance of the MeDIP signal. When signal variation is large, classifica-
tion tends to be more difficult. Many statistical analysis methods 
have been proposed to minimize this problem and to facilitate 
accurate probe classification in the context of MeDIP-chip data 
(e.g., [15, 25–29]). The development of such methods continues 
to be an active area of research. Classification is particularly prob-
lematic in regions of the MeDIP signal distribution where signals 

3.2  Classification of 
Methylated Regions 
Using MeDIP-Chip

Table 1 
Classification probe windows using WGBS-seq

R60 R202

Classification cutoff 5.09E−3 7.03E−3

# of probe windows selected for analysis 551,688 (77.6) 550,676 (77.4)

# of unmethylated probe windows 369,358 (67.0) 367,526 (66.7)

# of methylated probe windows 182,330 (33.0) 183,150 (33.3)

Median signal, unmethylated windows 9.58E−4 (0.000–5.09E−3) 9.65E−4 (0.000–7.02E−3)

Median signal, methylated windows 3.32E−2 (5.09E−3–0.552) 3.33E−2 (7.03E−3–0.562)

Reported are the number of unmethylated and methylated windows using a genome-wide false-positive rate of 0.01

Evaluation of MeDIP-Chip in the Context of Whole-Genome Bisulfite Sequencing…
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from unmethylated probes overlap with those from methylated 
probes (Fig. 6). In this case, the task is to find an informative cut-
off that would minimize both false-positive and false-negative 
methylation calls.

To illustrate this problem empirically we use the WGBS-seq signal 
to define high-confidence methylated probe windows based on a 
measurement error distribution. To achieve this, let the measure-
ment error, y, of the jth probe window be given by

3.2.1  Defining the  
“Gold Standard”

Fig. 6 Overlap unmethylated and methylated probe signal distributions. Shown are the MeDIP distributions that 
correspond to a certain WGBS-seq signal range. It becomes clear that there is a significant overlap between 
the MeDIP signal distributions with a low WGBS-seq signal (unmethylated; black is WGBS-seq signal of zero) 
and those with a high WGBS-seq signal (methylated). The G/R data (a) tends to have a higher overlap com-
pared to the R/G data (b). The DS data (dye-swap; c) shows an average overlap result. It also shows a higher 
overlap compared to the R/G data
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y j
Rj

R
( ) ( )

max
,= − ×1 CR

where Rj is the number of cytosines in the jth probe window, Rmax 
the maximum number of cytosines across all windows, and CR is 
the overall conversion rate. Furthermore, let us define the empirical 
density distribution of the error as f(y) (Fig. 7). Using this distribu-
tion, the genome-wide false-positive (GWFP) rate can be calcu-
lated numerically using

GWFP d= − ∫1 0 f y yT ( ) ,

where T is the WGBS-seq signal threshold that is needed to meet 
a given GWFP level. We find that for GWFP = 0.01, the WGBS-seq 
threshold is approximately 5.09E−3 and 7.03E−3 for R60 and 
R202, respectively. Hence, we define probe window j as methyl-
ated if the WGBS-seq signal of that region is larger than the threshold 
T. At this threshold level, we find that 33.0 % (N = 182,330) and 
33.3 % (N = 183,150) of all probe windows (genome-wide) can be 
confidently called methylated with this technology in R60 and 
R220, respectively (Table 1).

We use the WGBS-seq-derived classification to assess the problem 
of determining the methylation status of probes in the context 
of MeDIP-chip data. We first consider a naïve classifier which 
consists of a single MeDIP cutoff. According to this classifier, a 
probe is considered methylated if its signal exceeds the cutoff 
and as unmethylated if its signal falls below it. Comparing the 

3.2.2  MeDIP Signal 
Classification Based  
on a Naïve Classifier

Fig. 7 Measurement error distributions. Shown are the measurement error distributions of both epiRILs and 
the signal cutoffs that correspond to a genome-wide false-positive rate of 0.01
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Fig. 8 False-positive and false-negative rates using a naïve classifier. Shown are the proportions of false-
positive and false-negative probe classifications for different classification cutoffs of the MeDIP data (a) and 
(b) and the sum of the two (c). The G/R data shows a substantial higher proportion of FP and FN compared to 
the R/G data

resulting calls to those obtained from the WGBS-seq classification 
(Subheading 3.2.1) allows us to define the MeDIP false-positive 
and false-negative rates associated with the naïve classifier. 
Figure  8a, b shows the distribution of false-positive and false-
negative rates for series of cutoffs across the entire MeDIP signal 
range (−4 till 3 with step size 0.2). This analysis shows that there is 
a considerable trade-off between minimizing false positives and 
false negatives while maximizing the total number of regions 
detected as methylated. We find that the optimal cutoff corre-
sponds to an MeDIP signal of about–1.5 (Fig. 8), which yields a 
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Table 2 
Number of false-positive and false-negative probe classification

R60 R202

FP FN FP + FN FP FN FP + FN

G/R—naïve cutoff 17,973 120,335 138,308 (0.251) 25,945 111,320 137,265 (0.249)

G/R—HMM 12,796 114,197 126,993 (0.230) 12,385 110,766 123,151 (0.224)

R/G—naïve cutoff 16,763 97,826 114,589 (0.208) 24,932 83,325 108,257 (0.197)

R/G—HMM 11,564 108,238 119,802 (0.217) 13,985 101,413 115,398 (0.210)

DS—naïve cutoff 14,901 107,635 122,536 (0.222) 15,852 101,227 117,079 (0.213)

DS—HMM 12,905 107,769 120,674 (0.219) 15,179 100,496 115,675 (0.210)

Reported are the number of false-positive and false-negative probe classifications using either a naïve cutoff or a 
Hidden Markov Model. Numbers of the naïve cutoff are based on the most optimal cutoff in Fig. 8c (smallest 
number of FP + FN)

combined false-positive and false-negative rate of about 0.23. 
Consistent with the dye-effects illustrated in our assessment of the 
dynamic range (Subheading 3.1), the combined false-positive and 
false-negative rates show substantial dye-dependence, with 
genome-wide rates of about 0.25, 0.20, and 0.22 for the G/R, 
R/G, and the DS data, respectively (Fig. 8; Table 2). Hence, the 
G/R data yields the highest misclassification rate which is likely 
caused by its high signal variance. Again, the dye-swap does not 
correct this problem (Fig.  8). See Note 2 for recommendations 
concerning the labeling of the IP and input DNA.

This dye bias can be partially alleviated if one considers, instead of 
the above naïve classifier, a more sophisticated statistical classifica-
tion approach based on HMMs (Fig. 9, Table 2). We have recently 
proposed an HMM for the analysis of MeDIP-chip [15]. This 
model has been shown to outperform alternative methods in 
terms of speed, sensitivity, and specificity [28]. An important 
aspect of this model is, as with HMMs in general, that it borrows 
signal information from immediately surrounding probes, and 
therefore significantly reduces measurement noise. This leads to a 
more robust inference of the underlying methylation status of a 
given probe window and makes methylation analysis less suscep-
tible to dye effects. Figure 9 illustrates this point clearly; it shows 
that the HMM analysis of the R/G, G/R, and DS data results in 
much smaller misclassification differences between these data sets 
in terms of overall false-positive and false-negative rates (about 
0.23, 0.21, and 0.21 for the G/R, R/G, and the DS data, respec-
tively; Table 2). See Note 3 for recommendations concerning the 

3.2.3  MeDIP Signal 
Classification Based on 
Hidden Markov Model

Evaluation of MeDIP-Chip in the Context of Whole-Genome Bisulfite Sequencing…



218

Fig. 9 Comparison performance of a naïve classifier and a Hidden Markov Model. Shown are the proportion of 
misclassified probes (FP + FN) obtained using the most optimal MeDIP classification cutoff (MeDIP-cut; smallest 
number in Fig. 8c) or the HMM classification (HMM-class). The color of each bar corresponds to the three data 
sets (green: G/R data; red: R/G data; blue: DS data)

analysis of the data. Nonetheless, despite this improvement, 
dye-related differences, particularly in the G/R data, do persist 
and continue to affect our ability to infer the correct methylation 
status of a given genomic region (Fig. 9). It is therefore of interest 
to identify and characterize the sources of this bias in the MeDIP-
chip data.

To explore the source of the observed dye bias, we start by plotting 
the two dye combinations (G/R and G/R) in a scatter plot 
(Fig. 10a). We find that there is a subset of the probes that shows 
a relatively higher signal for the G/R data compared to the R/G 
data. Inspection of the WGBS-seq signal corresponding to these 
probes indicates that the methylation level of these probe windows 
should be low (high density of probes around zero). This expecta-
tion is indeed reflected in the R/G signal (Fig. 10c), but not in the 
G/R signal which seems to be vastly exaggerated (Fig. 10b). Since 
the dye-swap signal yields only an average of the R/G and G/R 
data it cannot correct this bias (Fig. 10d).

Annotation analysis of this subset of probes shows that they 
contain a high proportion of transposon and intergenic sequences 
relative to genic sequences (Fig.  11a). In Arabidopsis, it is well 
known that genes have a higher CG percentage compared to 
transposons (Fig. 12). This raises the question whether CG content 
may be a key contributor to the observed dye bias.

In order to explore this possibility more generally, we calcu-
lated the CG content of the probe window for each probe on the 
tiling array and examined its relationship with signal intensity in 
the G/R, R/G, and DS data sets. For clarity we restricted our 
analysis to probes that were unmethylated according to WGBS-seq 
(see Table 1). In this way we could rule out any trends arising 
from differences in methylation levels. Our analysis shows that the 
signal intensity of unmethylated regions in the G/R data is subject 

3.3  Dye Bias in 
MeDIP-Chip Is 
Associated with Low 
Methylation Levels 
and CG Content
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Fig. 10 Inspection of non-correlating probes using WGBS-seq signal data. (a) Shown is a density plot of the 
difference of both dye combinations. The inset shows a scatter plot of both dye combinations. Probes with a 
signal difference higher than two are indicated with dark gray. (b)–(d) Scatter plots of WGBS-seq data (y-axis) 
and each of the three MeDIP data sets (x-axis). The non-correlating probes (dark gray in panel a) are high-
lighted according to the color assigned to each data set (green: G/R data; red: R/G data; blue: DS data). The 
black line shows the median WGBS-seq signal for sliding windows along the entire MeDIP signal range
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Fig. 11 Annotation analysis and CG bias of unmethylated probes. (a) Shown is the proportion of genic, trans-
posable element (TE) and intergenic probes along the entire MeDIP difference range (G/R–R/G). (b)–(d) Scatter 
plots of the CG percentage of each probe window (y-axis) and the MeDIP signal of each of the three MeDIP 
data sets (x-axis). The trend lines show a clear negative relationship between CG content and signal intensity. 
The color of each line corresponds to the three data sets (green: G/R data; red: R/G data; blue: DS data)
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to strong dye biases (Fig. 11b). We find a clear negative linear rela-
tionship between CG content and signal intensity; that is, signal 
intensity is highest for probes with low CG content and lowest for 
probes with high CG content. By contrast, CG content appears to 
have little influence on the signal intensity in the R/G data 
(Fig.  11c), and the DS displays intermediate levels of CG bias 
(Fig. 11d). See Note 2 for recommendations concerning the label-
ing of the IP and input DNA.

Royce et al. [30] considered normalizing tiling array signals for 
the CG content of probes. While this procedure may work for 
some applications, such as transcription factor binding data (ChIP-
chip), its application to gene expression tiling arrays has been 
shown to lead to overnormalization and hence to a loss of signal 
information [31]. Overnormalization is expected to be even more 
drastic in MeDIP-chip data where CG content is correlated with 
DNA methylation levels. Correcting for CG content, in this case, 
will reduce signal intensities arising from probes with true positive 
methylation measurements. A simple solution to bypass these 
issues is to work exclusively with R/G data where CG bias appears 
to be minimal (Fig. 11c, see Note 2).

4  �Concluding Remark

Although the mapping resolution of MeDIP-chip (~165 bps) is 
much lower than the single cytosine measurements that can be 
achieved with WGBS-seq, this array-based technology provides a 
level of resolution that should be sufficient for the detection of 
most functionally important differentially methylated regions. 
MeDIP-chip requires fewer bioinformatic resources and therefore 

Fig. 12 CG content of genes and transposons. Shown are the CG content distributions of genes and transpos-
able elements (TEs)
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scales more easily to large samples. Provided several experimental 
and data preparation steps are followed (see Note 1–3), MeDIP-
chip presents a viable alternative to WGBS-seq in future popula-
tion epigenetic studies.

5  �Notes

	 1.	Recommendations for data preparation: Prior to MeDIP-chip 
analysis, potentially cross-hybridizing probes should be 
removed. They typically show signal intensities similar to 
probes that correspond to genomic regions with high methyla-
tion levels (Fig. 3). Failure to remove cross-hybridizing probes 
can therefore result in the detection of a large number of false 
positives. However, removal of these probes will result in loss 
of measurement coverage; but this drawback is no different 
from sequencing-based approaches where short reads that do 
not map uniquely are usually excluded.

	 2.	Recommendations for dye-labeling: Dye-related biases can pose 
serious concerns in dual-channel MeDIP-chip. Labeling the 
immunoprecipitate (IP) DNA with Cy3 (green) and the con-
trol DNA (input) with Cy5 (red) (i.e., G/R data) introduces 
strong signal distortions that significantly compromise mea-
surement accuracies. These biases are particularly pronounced 
in genomic regions with low methylation and low CG content. 
This signal bias disappears when the opposite labeling strategy 
is employed (labeling IP with Cy5 and input with Cy3, i.e., 
R/G data). As a result of the G/R dye bias, dye-swap experi-
ments in MeDIP-chip always perform worse than the R/G 
data alone, despite the fact that DS consists of twice as much 
data. Hence, despite its routine use in expression micro-array 
studies, we do not recommend the use of dye-swaps in dual-
channel MeDIP-chip. This means that experimental costs can 
be reduced by a factor of two without loss of measurement 
information.

	 3.	Recommendations for data analysis: The classification of probes 
as methylated or unmethylated requires a sound statistical 
approach. The best methods for MeDIP-chip are variants of 
HMMs [28]. The assumptions of HMMs are fundamentally 
consistent with the data properties arising from MeDIP-chip 
experiments. These assumptions are the following: (1) A probe 
signal is a noisy proxy for an underlying (unobserved) methyla-
tion state and (2) methylation states are spatially correlated 
along the genome owing to the array design and the propen-
sity of DNA methylation to occur in clusters. Our application 
of a recent HMM designed for Arabidopsis MeDIP-chip [15] 
resulted in a genome-wide false-positive rate of about 0.02 and 
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false-negative rate of about 0.19 (a combined rate of 0.21) for 
the R/G data. This relatively high false-negative rate implies 
that the application of this HMM misses regions with low 
methylation levels. Less customized methods may yield even 
higher misclassifications. In population studies, this limitation 
will restrict the calling of DMRs to clear methylation differ-
ences between individuals (e.g., no methylation versus high 
methylation) and will likely fail to detect more subtle DMRs 
(e.g., no methylation versus low methylation). One way to 
improve this situation is to consider at least one additional 
technical R/G replicate.
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