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Cellular senescence is a potent anti-cancermechanism that arrests theproliferation ofmitotically competent cells
to prevent malignant transformation. Senescent cells accumulate with age in a variety of human and mouse tis-
sues where they express a complex ‘senescence-associated secretory phenotype’ (SASP). The SASP includes
many pro-inflammatory cytokines, chemokines, growth factors and proteases that have the potential to cause
or exacerbate age-related pathology, both degenerative and hyperplastic.While cellular senescence in peripheral
tissues has recently been linked to a number of age-related pathologies, its involvement in brain aging is just be-
ginning to be explored. Recent data generated by several laboratories suggest that both aging and age-related
neurodegenerative diseases are accompanied by an increase in SASP-expressing senescent cells of non-
neuronal origin in the brain. Moreover, this increase correlates with neurodegeneration. Senescent cells in the
brain could therefore constitute novel therapeutic targets for treating age-related neuropathologies.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The development of therapies aimed at mitigating or delaying age-
related neurodegenerative diseases is a major priority for the biomedi-
cal community due to the enormous social, emotional and economic
burden associated with them. The disappointing outcomes of dozens
of phase III clinical trials of treatments for Alzheimer's disease (AD)
and Parkinson's disease (PD) indicate a need for fresh approaches to
identify novel targets that drive processes that cause age-related
neuropathology.

A new view has recently emerged suggesting that aging itself may
not merely be a major risk factor for these disorders, but may actually
be the underlying driving force. This view begs the question as to
whether interventions that prevent the occurrence of basic aging
processes can prevent or alleviate age-related conditions, including
neurodegenerative diseases. One such mechanism currently under in-
vestigation by several laboratories is a process known as cellular
senescence.

2. Cellular senescence and the SASP

Cellular senescence is a potent anti-cancer mechanism that can
occur in virtually all cell types that are capable of cell division. Thus
far, replication-competent cell types that undergo senescence include
fibroblasts, epithelial cells, melanocytes, endothelial cells, astrocytes
ersen).
(Bitto et al., 2010; Coppe et al., 2010, 2008; Voghel et al., 2007;
Wajapeyee et al., 2008). The senescence response arrests cell prolifera-
tion, stably and essentially irreversibly, in response to stresses that puts
cells at risk for malignant transformation (Campisi, 2001; Collado and
Serrano, 2010; Prieri et al., 2008). These stresses include repeated cell
division that erodes telomeres (perceived by cells as severely damaged
DNA), DNA damage anywhere in the genome, and disrupted chromatin
(epigenomic damage) (Campisi, 2007; Guney et al., 2006; Rodier et al.,
2005; Shay and Wright, 2005). Cellular senescence can also be induced
by activated oncogenes, strong or persistent mitogenic signals, and sev-
eral forms of oxidative stress (Adams, 2009; Ben-Porath andWeinberg,
2005; Braig and Schmitt, 2006; Campisi and d'Adda di Fagagna, 2007;
Herbig and Sedivy, 2006; Ohtani et al., 2004; Passos and Von Zglinicki,
2006; Toussaint et al., 2000).Many senescence inducers directly or indi-
rectly cause genomic or epigenomic damage. The damage response ulti-
mately activates the p53/p21 and p16INK4a/pRB tumor suppressor
pathways, which establish and maintain the senescence growth arrest
(Adams, 2009; Campisi and d'Adda di Fagagna, 2007; Herbig and
Sedivy, 2006; Ohtani et al., 2004).

Cellular senescence may be an example of evolutionary antagonistic
pleiotropy (Campisi, 2003). This evolutionary theory posits that, be-
cause the force of natural selection declines with age, processes that
were selected to promote fitness in young organisms can have unselect-
ed deleterious effects in older organisms (Rose, 1991). Hence, the senes-
cence response protects organisms from cancer early in life; late life in
life, however, it may promote phenotypes and pathologies associated
with aging. Senescent cells have indeed been demonstrated to accumu-
late with age in a variety of tissues (Dimri et al., 1995; Erusalimsky and
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Kurz, 2005; Herbig and Sedivy, 2006; Jeyapalan et al., 2007; Kishi, 2004;
Melk et al., 2003; Paradis et al., 2001). A seminal publication recently
demonstrated that the elimination of senescent cells that accumulate
in a progeroid mouse model prevents the onset of three major aging
phenotypes (cataracts, sarcopenia, loss of subcutaneous fat), providing
the first evidence that senescent cells play a causal role in at least
some age-related pathologies in vivo (Baker et al., 2011).

In addition to arresting growth, senescent cells express a
senescence-associated secretory phenotype (SASP): the robust secre-
tion of many inflammatory cytokines, growth factors and proteases
(Coppe et al., 2010, 2008). SASP factors include several interleukins
(ILs), monocyte chemotactic proteins (MCPs; aka CCLs), growth-
related oncogenes (GROs; aka CXCLs), and inflammatory cytokines
such as granulocyte–macrophage colony stimulating factor (GM-CSF)
andmacrophage inflammatory proteins (MIPs; aka CCLs), amongothers
(Coppe et al., 2010; Davalos et al., 2010; Freund et al., 2010). SASP fac-
tors can have potent effects on neighboring cells and thus can alter
local and systemic tissue milieus.

There are potentially beneficial effects of the SASP. For example,
chemokines or cytokines secreted by senescent cells can recruit natural
killer cells, thus facilitating the removal of senescent cells and neighbor-
ing tumor cells; this process is termed ‘senescence surveillance’. Other
SASP factors can communicate cellular damage to the surrounding tissue
and stimulate repair or limit damage-induced fibrosis (Krizhanovsky
et al., 2008). However, many SASP factors have been shown, or are
suspected, to cause or contribute to the loss of tissue structure and func-
tion that occurs with age by creating a pro-inflammatory milieu. For ex-
ample, the SASP has been shown to: (1) disrupt normal tissue structure
and function— e.g., the ability ofmammary epithelial cells to formalveoli
and ducts and express milk proteins (Parrinello et al., 2005; Tsai et al.,
2005); (2) induce epithelial-to-mesenchyme transitions in normal and
premalignant epithelial cells (Coppe et al., 2008, 2011); and (3) stimulate
premalignant and non-aggressive cancer cells to migrate and invade a
basement membrane (Coppe et al., 2010; Rodier et al., 2009). In some
cases, the use of blocking antibodies and recombinant proteins allowed
assignment of these activities to one or a few SASP factors. In vivo, senes-
cent cells can promote the conversion of premalignant cells to full blown
malignancy (Krtolica et al., 2001) and stimulate the growth andvascular-
ization of tumors initiated from established tumor cell lines (Coppe et al.,
2010; Krtolica et al., 2001).

Most SASP factors are up-regulated at the level of mRNA, in part due
to increased activities of nuclear factor kappa light chain enhancer of ac-
tivated B cells (NF-kB) and CCAAT/enhancer binding protein (C/EBP)
transcription factors (Coppe et al., 2008; Freund et al., 2010). The SASP
is dependent on the activation of specific signaling pathways, including
theDNAdamage response (DDR), p38mitogen-activated protein kinase
(p38MAPK), and mechanistic target of rapamycin (mTOR) pathways
(Coppe et al., 2008; Freund et al., 2011).

3. The aging brain

The brain is arguably themostmultifaceted tissue in complex organ-
isms, controlling processes that are vital not only to life but also at the
heart of cognition and personality. Loss of brain function, whether
through trauma or – much more commonly – aging, exacts an enor-
mous human and economic toll, especially among people in developed
nations where average life spans are at record highs (Vaupel, 2010;
Yankner et al., 2008). As with virtually all aging tissues in the body,
the aging brain is characterized by low level, chronic inflammation
(Chung et al., 2009; Franceschi et al., 2007). This phenomenon has
been termed ‘inflammaging’ (or ‘neuro-inflammaging’ in the brain)
(Frank-Cannon et al., 2009). Inflammaging is thought to cause or
contribute to most, if not all, major pathologies associated with aging.
Inflammation evolved to remove foreign bodies, pathogens and dam-
aged cells produced by acute cellular stress or injury (Ferrucci et al.,
2005). The acute inflammatory response causes robust local oxidative
and nitrosative damage, but is designed to be short-acting and self-
limiting. Chronic inflammation, by contrast, is a more feeble response,
but is long-standing and often self-perpetuating (Nathan and Ding,
2010). Inflammaging is considered ‘sterile’ inflammation because it oc-
curs in the absence of an obvious pathogen or foreign body.

In the aging brain, pathological changes associated with chronic in-
flammation include significant decreases in certain neuronal popula-
tions, dendritic and axonal arborization, post-synaptic densities,
dendritic spines, presynaptic markers, synapse and cortical volume
(Yankner et al., 2008). These cellular and tissue changes result in cogni-
tive andmotor impairment,memory loss and other phenotypes charac-
teristic of aged mammals. The etiology of neuro-inflammaging is a
crucial unresolved question. An important source of neuroinflammation
in the aging brain is the proliferative glial cells (astrocytes, oligodendro-
cytes and microglia). These cells normally provide structural, metabolic
and trophic support to neurons (Allen and Barres, 2009; Chung et al.,
2009; Lucin andWyss-Coray, 2009;McGeer andMcGeer, 1998; Ransom
et al., 2003). However, they can also have detrimental effects on neigh-
boring neurons due to the chronic production of pro-inflammatory fac-
tors, including reactive oxygen species (ROS) and leukocyte-attracting
cytokines, which occurs with increasing frequency during aging.

4. Brain cell senescence

A potential contributor to age-related inflammation in the brain is
cellular senescence, likely occurring in replication-competent glial
cells. Recent studies from several laboratories suggest that senescent
cells are detectable in the mammalian brain, where they could contrib-
ute to neurodegenerative processes by secreting pro-inflammatory
SASP factors and/or disrupting cell–cell contacts needed for the struc-
tural and functional neuron–glial interaction that maintains neuronal
ion and metabolic homeostasis (Benarroch, 2005; Magistretti, 2006).
Senescent cells and their SASPs may therefore constitute a novel,
understudied, andpotentially important contributor to neuroinflamma-
tion and subsequent neurodegeneration. Characterization of cellular se-
nescence in the brain could uncover novel therapeutic targets for the
prevention and treatment of chronic age-related neurodegenerative
diseases.

4.1. Evidence for cellular senescence in proliferation-competent brain cell
types

Astrocytes are involved in a variety of important physiological and
pathological processes, including modulation of synaptic neuronal func-
tion and plasticity (Finch, 1993; Nichols et al., 1993). They are the most
abundant cell type in the brain and the primary responders to central
nervous system (CNS) insults, including infection, trauma and neurode-
generation, in response to which they exert important tissue defense
mechanisms. Dysfunctional astrocytes are implicated in neuropathology
associated with both normal brain aging and various age-related neuro-
degenerative diseases (Chen and Swanson, 2003). In response to exoge-
nously added H2O2, cultured astrocytes have been reported to display
numerous characteristics of senescent cells: arrested growth, an en-
larged morphology, increased senescence-associated beta-galactosidase
(SA-Bgal) activity, and increased expression of the senescent cell
markers p21 and p16INK4a (Bitto et al., 2010). Cultured human astrocytes
exposed to DNA-damaging ionizing irradiation (IR) also undergo senes-
cence and develop a SASP, similar to the behavior of cultured human fi-
broblasts (Zou et al., 2012). Astrocytes cultured from the brains of aging
rats stain positively for SA-Bgal, in conjunction with a reduced ability to
maintain the survival of co-cultured neurons (Pertusa et al., 2007). In
vivo, astrocytes, as determined by glial acidic fibrillary protein (GFAP)-
positivity, demonstrated a flat morphology, a characteristic of senescent
cells, as well as age-related synaptic impairment (Nichols et al., 1993).
These findings suggest that loss of neuroprotection during brain aging
coincides with increased astrocytic senescence.
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Microglia, another important replication-competent cell type in the
brain, function as residentmacrophages in the CNS (Streit, 2002a,b).Mi-
croglia provide immune surveillance and mediate innate immune re-
sponses to invading pathogens or injury. These responses include the
secretion of cytokines, prostaglandins and growth factors, production
of external ROS and stimulation of phagocytosis (Doorn et al., 2012).Mi-
croglia are normally found in a quiescent (resting) state, characterized
by small soma and highly ramified processes. In response to infection
or CNS injury, microglia become activated and undergo morphological
changes, including shortening of ramified branches and enlargement
of the soma. Activated microglia also up-regulate cell surface activation
antigens and secrete a variety of pro-inflammatorymediators and other
potentially neurotoxic factors (Kreutzberg, 1996). Chronic microglial
activation has been implicated in the neuronal death associated
with neurodegenerative diseases, including AD and PD (Frank-Cannon
et al., 2009; Sugama, 2009).

There is strong evidence to suggest that, with advanced age, func-
tional abnormalities occur in themicroglia that impair their ability to re-
spond efficiently to stimuli (Conde and Streit, 2006; Sawada et al.,
2008). A comparative study examining both young and old autopsied
human brains demonstrated that, with age, microglia transform
morphologically from ramified to hypertrophic and dystrophic forms,
characterized by loss of fine branches (deramification), formation of
Fig. 1. Senescence within non-neuronal cells in the brain include (A) astrocytes and (B)mcirog
neurons and elicit activation of the other cell type, resulting in frank inflammation. Astrocytic
within C) endothelial cells may act to compromise the blood–brain-barrier, potentially allowin
ducemyelination of neurons and thus their signaling capacity. Neural stemcells (NSCs) undergo
types, neurons would not be predicted to undergo senescence, its occurrence would result in d
cytoplasmic spheroids, beading and fragmentation (Flanary, 2005;
Streit et al., 2004).

It has been reported that telomere shortening occurs in ratmicroglia,
both in culture with repeated cell division and in vivo with advancing
age. In both cases, this telomere shortening can lead to cellular senes-
cence (Flanary and Streit, 2003, 2004). In response to repeated lipopoly-
saccharide administration, cultured microglial cells also undergo a
senescence response as determined by arrested growth, enhanced SA-
βgal activity, and senescence-associated heterochromatic foci (Yu
et al., 2012). Both normal brain aging and chronic age-related neurode-
generative disease are associated withmicroglial-mediated increases in
components that are associated with the SASP, including increases in
pro-inflammatory cytokines such as IL-1β and IL-6 (Bachstetter et al.,
2011).

Other proliferative cell types in the brain that could conceivably un-
dergo senescence include oligodendrocytes, endothelial cells and neural
stem cells (NSCs). The senescence of these cell types could have both
intrinsic and extrinsic effects on neuronal function. The senescence of
oligodendrocytes, for example, could reduce myelination of neuronal
axons, thereby decreasing their interneuronal signaling ability. The
senescence of endothelial cells could contribute to the age-related dis-
ruption of the blood–brain barrier (BBB), resulting in and influx of pe-
ripheral inflammatory factors that can contribute to subsequent
lia which can release neurotoxic SASP factors that can both impact directly on neighboring
senescence may also result in loss of important trophic support for neurons. Senescence
g peripheral immune cells to enter the brain. Senescence of (D) oligodendrocytes may re-
ing senescence can result in inhibition of neurogenesis. Although as a non-proliferating cell
irect effects on this cell type.
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neuronal cell loss (Zlokovic, 2008). The BBB deterioration that occurs
during aging has also been linked to age-related cognitive decline
(Abazov et al., 2009). Finally, the senescence of NSCs could blunt adult
neurogenesis. Exposure of cultured NSCs to ionizing radiation was re-
cently reported to result in senescence without a SASP in the small frac-
tion of the population that failed to die by apoptosis, and p16-positive
NSCs have been identified in the aging brain (Molofsky et al., 2006;
Zou et al., 2012). Neurons are terminally differentiated and would not
be predicted to mount a ‘classic’ senescent response, although a recent
study reported senescence markers in non-dividing neurons in the
aging mouse brain (Jurk et al., 2012). Given the mounting evidence
that senescent cells, largely through the SASP, can disrupt tissue struc-
ture and function, cellular senescence may be an important factor to
consider in age-related neurodegeneration, including which cell types
are involved and how (Fig. 1).
4.2. Brain cell senescence in human aging and neurodegenerative diseases

Senescentmarkerswere recently reported in astrocytes in autopsied
human brain tissue; both p16INK4a and the SASP factor matrix metallo-
proteinase (MMP) 3 increased significantly with age and were even
higher in affected cortical brain tissues from AD patients relative to
age-matched controls (Bhat et al., 2012). Our laboratory similarly
found an increased burden of senescent astrocytes in autopsied
substantia nigra pars compacta (SNpc) from PD patients compared to
age-matched controls based on elevated p16INK4a levels (unpublished
data). Likewise, we found an increase in DNA damage (γH2AX) foci in
astrocytes in PD SN; these foci are characteristic of senescent cells and
are required for the SASP that develops in response to genomic stress
(Rodier et al., 2011). This finding suggests that at least astrocytes, the
major cell division-competent cell type in the brain, undergo senes-
cence in vivo in humans and are more prominent in both neurodegen-
erative disease and aging.
5. Future issues to be addressed

Several important biological questions remain to be addressed with
regard to cellular senescence in the brain. Do other proliferative cell
types undergo senescence in the context of aging and age-related neu-
rodegenerative diseases? What stressors are responsible for eliciting
brain cell senescence and the SASP? How do the SASPs compare be-
tween various brain cells and other cell types, including fibroblasts,
the cell type most commonly used for exploring this phenomenon?
Most importantly, does brain cell senescence contribute to neurodegen-
eration? If yes, is the neurodegeneration due to direct effects of the SASP
on neighboring neurons or is it due to activation of glial cells, resulting
in the amplification of neuroinflammatory processes?
6. Conclusion

Senescent cells accumulate with age in a variety of human and
mouse tissues and their elimination was recently demonstrated to
prevent certain age-related pathologies in peripheral tissues in a
progeroidmousemodel (Baker et al., 2011). Recent studies fromvarious
laboratories suggest that senescent cells are also present in the aging
brain and in conjunction with age-related neurodegenerative diseases.
Neurodegeneration associated with these conditions is closely tied to
neuroinflammation. A potential source of this neuroinflammation is
the pro-inflammatory SASP from senescent brain cells. Although there
are still many unanswered questions involving brain cell senescence,
the ability to critically test the idea that senescent cells can cause or con-
tribute to age-related neuropathology will allow the identification of an
important and novel target (senescent cells) for pharmacological inter-
ventions aimed at amelioration of age-related neurodegeneration.
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