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Abstract: 37 
 38 
An integrated account of the molecular changes occurring during the process of cellular aging is 39 
crucial towards understanding the underlying mechanisms. Here, using novel culturing and 40 
computational methods as well as latest analytical techniques, we mapped the proteome and 41 
transcriptome during the replicative lifespan of budding yeast. With age, we found primarily 42 
proteins involved in protein biogenesis to increase relative to their transcript levels. Exploiting 43 
the dynamic nature of our data, we reconstructed high-level directional networks, where we 44 
found the same protein biogenesis-related genes to have the strongest ability to predict the 45 
behavior of other genes in the system. We identified metabolic shifts and the loss of 46 
stoichiometry in protein complexes as being consequences of aging. We propose a model 47 
whereby the uncoupling of protein levels of biogenesis-related genes from their transcript levels 48 
is causal for the changes occurring in aging yeast. Our model explains why targeting protein 49 
synthesis, or repairing the downstream consequences, can serve as interventions in aging. 50 
 51 
 52 
Introduction:  53 
 54 
Aging, the gradual decrease in function occurring at the molecular, cellular, and organismal 55 
level, is a main risk factor for cardiovascular disease, neurodegeneration, and cancer [1]. 56 
Understanding its driving force is the required step towards enabling interventions that might 57 
delay age-related disorders [2]. While this remains an unsolved problem in biology [3,4], 58 
significant advances in the field have shown the process of aging to be malleable at both the 59 
genetic and environmental levels, indicating that it is possible for its causal elements to be 60 
dissected. The rate of aging, however, is influenced by diverse factors including protein 61 
translation, protein quality control, mitochondrial dysfunction, and metabolism [5–8]. The 62 
multitude of factors involved indicates that aging is a complex and multifactorial process, where 63 
ultimately an integrated and systems-level approach might be necessary to untangle the causal 64 
forces. 65 
 66 
Important insights into the complex process of aging originate from research on the unicellular 67 
eukaryote Saccharomyces cerevisiae, which can produce 20-30 daughter cells before its death 68 
([9] and see [10,11] for recent reviews). Significant contributions towards global mapping of the 69 
aging process have been demonstrated through transcriptome studies [12–16] and genome-wide 70 
single-gene deletion lifespan measurements (reviewed in [4]). However, a major task remains to 71 
comprehensively describe the molecular changes that accompanies the aging process. As the 72 
exponential increase in daughter cells represents a major challenge in terms of generating 73 
sufficient numbers of aged cells, to date no comprehensive description of the changes on both the 74 
proteome and transcriptome level has been provided. Assuming that the molecular changes 75 
occurring along the replicative lifespan of yeast are in part responsible for its decreased viability 76 
that occurs over time, we reason that revealing the dynamic and interdependent changes that 77 
accompany this process would allow us to distinguish cause from consequence in aging. 78 
 79 
Here, we developed a novel column-based cultivation method that generated large numbers of 80 
advanced-age cells in a constant environment. Applying next-generation RNA sequencing and 81 
shot-gun proteomics, we mapped the molecular phenotypes of aging yeast cells at 12 time points, 82 
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well into advanced age where the majority of cells had died due to aging. Analysis of these 83 
dynamic and comprehensive datasets allowed us to identify a general uncoupling of protein 84 
levels from their corresponding mRNA levels. This uncoupling was most apparent in protein 85 
biogenesis-related proteins, which we found overrepresented relative to their transcripts. Using 86 
computational network-based inference methods, we found that changes in these genes had the 87 
strongest ability to predict the behavior of other genes, thereby suggesting their causal role in 88 
replicatively aging yeast. On the basis of these analyses, we provide a systems-level model of 89 
aging unifying and integrating diverse observations made within the field.  90 

 91 

Results:  92 

Novel culture and computational methods to determine aged cell phenotypes 93 

To obtain aged yeast cells, we bound streptavidin-conjugated iron beads to biotinylated cells 94 
(adapted from [17]) from an exponentially growing culture. This starting cohort of mother cells 95 
was put into a column containing stainless steel mesh that was positioned within a magnetic field 96 
(Figure 1A and Figure 1-figure supplement 1). The daughter cells do not inherit the iron beads, 97 
as the yeast cell wall remains with the mother during mitosis [17]. By running a constant flow of 98 
medium through the column, we washed away the majority of emerging daughter cells. The 99 
flowing medium also provided fresh nutrients and oxygen and ensured constant culture 100 
conditions, as confirmed for pH, glucose, and oxygen levels (Figure 1-figure supplement 2A, B, 101 
and C). By maintaining multiple columns simultaneously, we could harvest cells from the same 102 
starting cohort at different time points and thus at different replicative ages (Figure 1-figure 103 
supplement 2D). Because we could retain up to 109 mother cells per column (Figure 1-figure 104 
supplement 3), we could produce sufficient numbers of aged cells for performing parallel 105 
proteome and transcriptome analyses. Computer simulations showed that the age distribution 106 
broadened over time (Figure 1-figure supplement 4A, B). The broadened age distribution results 107 
in a lower resolution making detecting the actual changes occurring at later time points more 108 
difficult, and we therefore harvested cells at exponentially increasing time intervals to maximize 109 
the differences between time points at later ages.  110 
 111 
To assess whether our column-based cultivation method generated correctly aged cells in a 112 
reproducible manner, we developed flow cytometric assays to determine the typical phenotypes 113 
of aging cells. Avidin-FITC (AvF) binding to the biotin-labeled cells distinguished the starting 114 
cohort of mother cells from daughter cells (Figure 1-figure supplement 5A). Dead cells were 115 
identified using propidium iodide (PI), which fluoresces upon intercalating with the DNA of 116 
membrane-permeable dead cells (Figure 1-figure supplement 5A). These two assays were used 117 
to determine the fractions of daughters, mothers, and dead cells in a population (Figure 1-figure 118 
supplement 5B). From this data, we derived the viability of the mother cells over time, which we 119 
found to be in excellent agreement with the lifespan curve of yeast as observed in a microfluidic 120 
device [18] (Figure 1B). Using the forward scatter of the flow cytometer as a rough proxy for 121 
cell size, we could qualitatively observe the cell size increase of live mothers that is known to 122 
occur in aging mother cells (Figure 1C) [19]. Similarly, using fluorophore-conjugated wheat-123 
germ agglutinin, which labels bud scars that appear after every division [20], we observed an 124 
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increase of bud scar staining on mother cells in the column, as also visualized by confocal 125 
microscopy (Figure 1D and Figure 1-figure supplement 2D). These analyses confirmed known 126 
changes that characterize aging yeast: increased cell size, increased bud scars, and decreased 127 
population viability (Figure 1B, C, and D). 128 
 129 
 130 
Next, we developed a combined experimental and mathematical method to determine the 131 
molecular phenotype of aging mother cells without contributions from daughter or dead cells. 132 
The approach exploits the fact that a system of linear equations can be solved when the number 133 
of unknowns equals the number of independent equations. Specifically, while we could 134 
determine the number of mothers, daughters, and dead cells in a sample using flow cytometry, 135 
the contribution of each type of cells to the measured abundance of a particular protein or 136 
transcript was unknown. Therefore, by measuring protein and transcript abundances in three 137 
mixed samples with various proportions of mothers, daughters, and dead cells, we could 138 
mathematically unmix the abundances. This resulted in unmixed data for the aging mother cells. 139 
Experiments using samples with mixed cell populations with known molecular phenotypes 140 
validated this mathematical unmixing method for the RNAseq transcriptome, targeted (selected 141 
reaction monitoring) proteome, and global (shotgun) proteome data with a <16% average error 142 
(Figure 2-figure supplement 1 and 2; supplemental note 1). 143 
 144 
To use this data unmixing approach, we harvested three mixed samples for each time point 145 
(Figure 2A, Figure 2-figure supplement 3). One sample was collected from the column effluent 146 
(Mix 3, mainly daughter cells). Harvesting all cells from the column and applying a further 147 
enrichment step on a larger magnet produced the two other samples: one sample contained 148 
mainly aged mother cells (Mix 2, 80–99% mothers), while the other contained an intermediate 149 
composition compared to Mixes 2 and 3 (wash fraction, Mix 1). In each of these mixed-cell 150 
samples, we determined the fraction of mothers, daughters, and dead cells and generated the 151 
mixed-population proteomes and transcriptomes. Then, we mathematically unmixed the 152 
proteomes and transcriptomes to obtain the molecular phenotype of aging mother cells. The data 153 
was corrected for sampling artifacts related to bead labeling and cell harvesting (Figure 2-figure 154 
supplement 4 and supplemental notes 2 and 3). Together, through this approach, we obtained 155 
pure data for aging mother cells and daughter cells.  156 
  157 
In two experimental series with overlapping time points, we generated 61 samples for both the 158 
proteome and the transcriptome as required for unmixing. After data processing, we obtained 159 
high quality data at 12 unique time points during the lifespan of replicatively aging yeast (Figure 160 
2-figure supplement 5). We found the replicates to be in excellent agreement (Spearman 161 
correlations > 0.85) (Figure 2B and C). A unified data set was generated for both the proteome 162 
and the transcriptome by fitting the replicate datasets with a polynomial regression (Figure 2D 163 
and E), keeping highly reproducible data profiles (~85% of genes, Figure 2-figure supplement 6), 164 
and resampling the fit at the actual time points of the experiment. This yielded profiles for 1494 165 
proteins and 4904 transcripts from aging mother cells. The raw data [22,23] and the data for each 166 
processing step are provided in the supplementary Tables S2 and S3 (Figure 2-source data 1 and 167 
2). The final datasets for aging mother cells are presented in Table S4 (proteome) and Table S5 168 
(transcriptome) (Figure 2-source data 3 and 4). 169 
 170 
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Biogenesis proteins increase relative to transcript levels during aging 171 
 172 
Correlation analyses between the proteomes of young cells and the proteomes of aging mother 173 
cells confirmed the expected divergence of the aging cell away from the youthful state (Figure 174 
3A and Figure 3-figure supplement 1). Daughters from later time points showed a partially aged 175 
signature (Figure 3-figure supplement 2), consistent with the notion that rejuvenation of daughter 176 
cells is incomplete later in a mother’s life [24]. Furthermore, we found agreement between 177 
specific proteome changes detected by us and observations present in literature, including 178 
changes related to glycolysis, and gluconeogenesis [13], increased expression levels in energy 179 
reserve pathway proteins [25], increases in stress response protein levels [26,27], and 180 
mitochondrial changes [28] (Figure 3B, Figure 3-figure supplement 3). Also, we confirmed that 181 
changes detected in our population-level study similarly occurred at the single-cell level, which 182 
excluded the possibility that our observed changes may reflect a gradual enrichment of a long 183 
lived subpopulation. Specifically, we see the levels of the stress-related chaperone Hsp104 and 184 
the translation elongation factor Tef1 to increase with age (Figure 3-figure supplement 4), similar 185 
to what was shown using a microfluidic platform tracking single cells [29]. Also, other single 186 
protein changes reported to occur in literature match well [15,21,28–33] (Figure 3-figure 187 
supplement 4). Together, these observations confirm the validity of our novel experimental 188 
design. 189 
 190 
To obtain further insights into the global changes in protein expression in mother cells, we 191 
plotted our dynamic data as a heat map expression profiles. We found that changes started at 192 
young age, were gradual, and mostly occurred in one direction (i.e. up, down) (Figure 4A and B). 193 
Specifically, we found that 64% (184/288 total changes) of the proteins that showed a 2-fold 194 
change by the end of the yeast lifespan also showed a significant change in the same direction at 195 
an earlier time point (Figure 3B). These findings suggest that aging is a gradual process 196 
occurring from early on.  197 
  198 
We next investigated whether these changes in the proteome data matched transcriptional 199 
changes. Interestingly, the RNAseq data showed similar gradual and unidirectional changes 200 
occurring from the beginning on (Figure 4-figure supplement 1A, 2, 3). To compare the changes 201 
between the proteome and transcriptome, we determined the non-parametric Spearman rank 202 
correlation, and found a starting correlation of 0.75, a value in agreement with other single-study 203 
comparisons between yeast proteomes and transcriptomes [34]. When comparing this correlation 204 
in time, however, we found that it declined steadily with age, down to a correlation of 0.70 205 
(Figure 5A). This decreasing trend was observed regardless of the statistical method used (Figure 206 
5-figure supplement 1). Furthermore, this trend is also not an experimental artifact, since samples 207 
originating from all time points were treated identically, and both proteome and transcriptome 208 
datasets originated from the same biological samples. The decrease in correlation between the 209 
proteome and transcriptome means that they do not change synchronously. Indeed, during aging, 210 
we found different GO terms to describe the changes in the proteins and transcripts that show a 211 
larger than 2-fold change during aging (Figure 3B vs. Figure 4-figure supplement 2A). These 212 
results indicate that, over time, protein levels were increasingly uncoupled from their transcript 213 
levels. 214 
 215 
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To identify the most uncoupled cellular processes, we plotted the fold-changes of transcript and 216 
protein expression in old and young cells on a gene product co-expression map (Figure 5A). The 217 
transcript and protein levels of genes in quadrants 1 (Q1) and 3 (Q3) were ‘coupled’, meaning 218 
that the changes in protein levels followed the changes in transcript levels. Q1 and Q3 were 219 
enriched in gene products related to sterol biosynthesis and cytoskeletal and cell wall processes, 220 
possibly related to cell growth. In contrast, the expression of gene products in quadrants 2 (Q2) 221 
and 4 (Q4) were ‘uncoupled’, meaning that the changes in protein levels did not follow the 222 
changes in transcript levels. In Q2, the proteins were overrepresented relative to their transcripts, 223 
i.e. there were more proteins per transcript in older cells than in younger cells. Of all analyzed 224 
transcript-protein pairs, 38.4% were located in Q2, suggesting a global tendency towards relative 225 
protein overabundance with aging (Figure 5). In line with this global protein overabundance, Q4 226 
contained fewer genes and less GO-term enrichments. Strikingly, Q2 was strongly enriched in 227 
‘translation regulation’ gene products (i.e. ribosome and protein biogenesis machinery) (Figure 228 
5B), and the extent of their overabundance progressively increased as the cells aged (Figure 5-229 
figure supplement 2, 3). 230 
 231 
Network inference identifies protein biogenesis related genes as causal in yeast aging  232 
 233 
Next we asked whether this increased level of biogenesis-related proteins, uncoupled from 234 
transcriptional regulation, was causal for downstream effects during replicative aging in yeast. 235 
Identifying causality on a systems-wide level is difficult, and the key challenge is to separate 236 
cause from downstream effects. However, our dynamically resolved, comprehensive data offered 237 
the possibility to reveal causal relationships.  238 
 239 
To elucidate the causal order of changes during aging, we reconstructed a high-level directional 240 
network revealing the interdependences of changes in transcript expression (Figure 6, Figure 6-241 
figure supplement 1A). Therefore, we defined each transcript’s expression profile as a network 242 
node, and an edge between each pair of nodes as a partial correlation between the nodes’ 243 
expression profiles (Figure 6-figure supplement 1B and C). Next, we determined the 244 
directionality of the edges, indicated by arrows. We defined directionality to represent the ability 245 
of a transcript’s profile to predict the profile of another transcript. Concretely, when looking at 246 
two connected nodes, the node that could be explained by the connected node was considered as 247 
the responsive node, while the predicting node was considered to be the causal node. (Figure 6-248 
figure supplement 1D and E) [35]. This relation defined the directionality of the edge. Any 249 
transcript that had no predictive ability and could not be predicted by any other transcript was 250 
removed from the network analysis. Following this, the nodes were clustered by maximizing the 251 
global modularity of the network [36] (Figure 6A and Figure 6-figure supplement 1). Finally, the 252 
clusters were ranked based on the ratio of causal nodes (outward arrows) to responsive nodes 253 
(inward arrows) per cluster to determine the higher-level causal relations existing between 254 
clusters. A sensitivity analysis was performed to determine the optimal sparsity of the network 255 
and the cut-off for the partial correlation among transcript profiles, through which we established 256 
that the network was a robust representation of the datasets (supplemental note 4, Table S7 257 
Figure 6-source data 1). These steps produced a high-level directional network, in which the 258 
ranking of the clusters with respective GO enrichments revealed causal relations during aging 259 
(Figure 6B). 260 
 261 
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This high-level directional network of the transcriptome data showed that the very first causal-262 
ranked cluster in the network that we detected was highly enriched for gene products associated 263 
with protein biogenesis (i.e. ribosome biogenesis and tRNA processing; Figure 6B). These are 264 
the same biological processes that had uncoupled transcript and protein levels (Figure 5B); 265 
indeed, genes from this causal cluster were enriched in Q2 of the co-expression map, which 266 
showed uncoupled expression (Figure 6-figure supplement 2A and B). These analyses suggest 267 
that the uncoupling of protein and transcript levels for ‘biogenesis’ related genes has a central 268 
role in the aging process, and may affect the transcript and protein abundances of other genes, as 269 
elaborated upon in the discussion.  270 
 271 
Consequences for other cellular processes   272 
 273 
The overabundance of proteins relative to transcripts must have consequences for cellular 274 
functioning. Protein overproduction could increase cell size, one of the first hallmarks described 275 
in yeast aging [19]. Increased cell size could reduce glucose influx rates per cell volume and 276 
induce metabolic changes, e.g. at low rates of glucose influx cells switch to respiration [37]. 277 
Indeed, in our transcript-based network analysis (Figure 6B) as well as in our proteome data set 278 
(Figure 3B) we found that metabolic signatures related to starvation and oxidative stress were 279 
consequences of aging. 280 
 281 
Furthermore, we hypothesized that if protein levels become globally uncoupled from their 282 
transcript levels during aging (Figure 5), the optimal stoichiometry of proteins in complexes may 283 
be perturbed (Figure 7A). Indeed, using curated lists of protein complexes [38], we found that an 284 
increased deviation from the original stoichiometry occurred with aging (Figure 7B,  C and D, 285 
and Figure 7-figure supplement 1, 2 and 3). We observed many complexes that were not 286 
previously implicated in aging to be age-affected, and we found previously implicated protein 287 
complexes such as the vacuolar ATPase [28] and the nuclear pore complex [30,31] to lose 288 
stoichiometry (Figure 7C and D and Figure 7-figure supplement 1, 2). The global stoichiometry 289 
loss was greater in aged mothers compared to the daughter population (Figure 7-figure 290 
supplement 3A), confirming that this is an aging-related phenotype. Additionally, we found that 291 
the stoichiometry loss was greater overall at the proteome level than at the transcriptome level 292 
(Figure 7B), supporting the observation that protein levels uncouple from their transcript levels.   293 
 294 
Being built of fewer genes (1494 proteins versus 4904 transcripts), the high-level directional 295 
network of the proteome was less revealing than that of the transcriptome (Figure 7-figure 296 
supplement 4). The most causal cluster of the proteome network was enriched for chaperone 297 
proteins, reflecting a cellular response to internally changing conditions. Such conditions could 298 
include metabolic restructuring in response to an increased cell size or to aggregating proteins 299 
that are accumulating due to altered protein complex stoichiometry. Furthermore, we found that 300 
the causal clusters of the proteome network tended to be expressed according to their 301 
transcriptional message (i.e. coupled expression; Q1, Q3), while the responsive clusters 302 
represented increasingly uncoupled expression (Q2, Q4) (Figure 6-figure supplement 2C). This 303 
both confirmed the response of the cell to the accumulating changes occurring during aging and 304 
indicated that the effects of uncoupled protein expression are progressive over time. We see the 305 
clear downstream consequences during aging emerging in the proteome, including metabolic 306 
shifts, stoichiometric loss, aggregating proteins, and protein overproduction. All of these point to 307 
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pathways and processes that may become dysfunctional with aging, any of which may ultimately 308 
result in cell death.  309 
 310 
 311 
Discussion: 312 
 313 
Using our newly developed culturing and computational methods and state-of-the-art proteomics 314 
and transcriptomics analyses, we generated the first systems-level molecular phenotype of 315 
replicatively aging yeast. The comprehensiveness of the data allowed us to discover that protein 316 
biogenesis machinery genes, including ribosome, tRNA synthesis, and translation regulation 317 
genes, have their protein levels uncoupled from their mRNA levels during aging (Figure 5B). 318 
Furthermore, the dynamic nature of the data allowed us to pinpoint the transcripts of these genes 319 
as having the strongest ability to predict the behavior of others transcripts during aging (Figure 320 
6B). Lastly, we observe metabolic changes, protein stress responses, and changes in the 321 
stoichiometry of many protein complexes (Figure 3B, 4, 7B). 322 
 323 
Based on these analyses we propose a model whereby the uncoupling of protein levels of 324 
biogenesis-related genes from their transcript levels is causal for the changes occurring in aging 325 
yeast. The model proposes that proteins of the translation machinery that are uncoupled from 326 
transcript levels accumulate in cells with age Figure 5B). As the biogenesis genes are themselves 327 
involved in translation, their uncoupling might contribute to further uncoupling of the proteome 328 
from the transcriptome as a whole. This general uncoupling has degenerative effects (i.e. cell 329 
size increase, protein aggregations and loss of stoichiometry in protein complexes), that stimulate 330 
transcriptional responses in the cell (i.e. metabolic changes and activated stress responses), 331 
which further contributes to changes in the proteome. Although we cannot exclude the possibility 332 
of other causes even further upstream, the uncoupling of the protein biogenesis machinery is 333 
likely an early driver of replicative aging in yeast. 334 
 335 
A question remains as to why the biogenesis-related class of proteins we identified as having 336 
protein levels uncoupled from their transcript levels become overrepresented in replicatively 337 
aging yeast in the first place. Ribosome footprinting has shown these proteins to be highly 338 
translated [39], and turnover experiments have shown them to be highly stable [40]; thus, it is 339 
possible that their overabundance may result from the combination of the dynamics of protein 340 
biogenesis, protein turnover, and mRNA stability. Interestingly, the ribosomal proteins 341 
themselves showed a low degree of loss of stoichiometry at the protein-complex level in our data 342 
(Figure 7C), supporting the idea that they are still active and contributing to uncoupling in the 343 
cell. In any case, the uncoupling of protein and transcript levels has downstream consequences 344 
for the cell that may explain many phenotypes of aging. First, cell size may increase due to 345 
protein overproduction and result in metabolic changes. Second, proteins being overproduced at 346 
different rates will alter protein complex stoichiometry. Many documented phenotypes of aging 347 
may result from this, including the formation of protein aggregates [26], increased ROS 348 
formation by a dysfunctional mitochondrial transport chain [41], and loss of gene silencing [42]. 349 
The sum of these may ultimately lead to system failure for the organism.  350 
 351 
Directly targeting certain failing protein complexes or downstream deleterious effects results in 352 
replicative lifespan extension, but we suggest that many of these effects will prove to be cell 353 
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type- and growth condition-specific. Our model predicts that a more robust extension of lifespan 354 
may be possible in many organisms by targeting the causal factor in aging, protein biogenesis. 355 
Indeed, altering the rates of protein production (i.e. translation) or degradation (i.e. autophagy) 356 
have repeatedly been shown to influence longevity across a wide range of organisms (see 357 
[10,43,44]). The translation activators TOR and S6 kinase fall into this category, and decreases 358 
in their activity result in increased lifespan in yeast [45,46], worms [47,48], flies [49], and mice 359 
[50,51], as does calorie restriction and drugs such as rapamycin, which are also modulators of 360 
protein biogenesis pathways [43]. Likewise, deletions in ribosomal subunit components have 361 
positive effects on lifespan in both yeast [52] and worms [53]. Our model suggests why these 362 
interventions and mutations have a lifespan-extending effect in a broad spectrum of organisms, 363 
namely because protein biogenesis machinery is itself a driver of aging.  364 
 365 
 366 
Materials and methods: 367 
 368 
Aging Yeast 369 
 370 
Strains and medium 371 

The prototrophic Saccharomyces cerevisiae strain YSBN6 (Mata) was used for the 372 
phenotyping of yeast replicative aging [54]. The cells were grown in yeast nitrogen base (YNB) 373 
without amino acids (ForMedium, Norfolk, UK) supplemented with 2% glucose, at a 374 
temperature of 30˚C, unless indicated differently. Precultures in flasks were shaken at 300 RPM. 375 

Replicates of samples not processed by the steps involving biotinylation and the 376 
attachment of beads (termed “unprocessed samples”) were precultured in the above medium for 377 
minimum 24 hours in mid exponential growth phase and were immediately pelleted (5 min 378 
2500×G) and snap frozen in liquid nitrogen. 379 
 380 
Preparing the cells for column captured culturing in aging columns 381 

Prior to loading the cells onto the aging columns, the cells were biotinylated and labeled 382 
with iron beads (Figure 1–figure supplement 1) in a manner adapted from [17], as follows: The 383 
yeast YSBN6 was pre-cultured for minimally 24 hours in a mid-exponentially growing growth 384 
phase, having an OD600 below 1. Cells were harvested and concentrated by gently centrifugation, 385 
10min 2500×G. For one column, 3×109 cells were resuspended in 1 ml 2×PBS (phosphate 386 
buffered saline), immediately mixed with 14 mg Sulfo-NHS-LC-Biotin (Thermo Scientific, 387 
Rockford, IL, USA) dissolved in 1 ml cold (4˚C) water and incubated in a shaker (800 rpm) at 388 
room temperature for 20 minutes. The biotinylated cells were washed twice with 1×PBS at room 389 
temperature and were resuspended in 100 ml pre-warmed YNB plus 2% glucose and incubated 390 
for 90 minutes at 30˚C shaken at 300 RPM. At room temperature, the cells were pelleted by 391 
gentle centrifugation (5min, 2500×G), washed with 1×PBS, resuspended in 4 ml 1×PBS, mixed 392 
with 750 µl of streptavidin coated BioMag beads (Qiagen, Germantown, MD, USA) and 393 
incubated for 30 min on a lab rocker. The bead-labeled cells were concentrated in ~0.5 ml PBS 394 
by gentle centrifugation (5min, 2500×G) and 2×109 cells were loaded onto the magnetized aging 395 
column. 396 
 397 
The aging columns setup 398 
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The aging column setup is a closed system, where cells are cultivated on a magnetized 399 
iron meshwork under a constant flow of medium (Figure 1–figure supplement 1B and C). The 400 
setup was designed to ensure a sterile environment within the system, continuous removal of 401 
daughter cells, and constant oxygen and nutrient concentrations in the medium. Table S1 (Figure 402 
1-source data 1) shows materials used for its construction and operation. 403 

The core of the setup for column captured cell cultivation is the 0.3" Negative Selection 404 
Column combined with a 3-way stopcock (Stemcell Technologies Inc., Figure 1-source data 1 405 
Table S1), which is placed in a magnetic field. Four magnets (StemSep™ Red Magnet, Stemcell 406 
Technologies) were placed in a stand (custom made, Figure 1–figure supplement 1D), and four 407 
stands with magnets were connected in a row to run 16 columns simultaneously. The rim at the 408 
top of the column was cut with a sharp scalpel, to enable connection with 15 cm long silicone 409 
tubing (Si, inner diameter (id) 8mm, outer diameter (od) 11mm, Si 8-11, Figure 1–figure 410 
supplement 1C, Figure 1-source data  1 Table S1). Silicone tubing was chosen, as it is air 411 
permeable. The T-connector (od 10 mm, C T-10) on top serves to connect the column with the 412 
inlet tubing from the side and a 6 cm long tubing closed with a clamp (C.II). 413 

The pump (BVP standard motor, MS/CA4-12 + 3× MS/CA4-12 extensions; Ismatec) 414 
provided a constant medium flow over the column. The pump tubing (Pharmed, BPT Tubing, 415 
1.52 mm ID, 400 mm length) connected the 20L medium jar (20L round HDPE bottle, Nalgene) 416 
to the column via 2 long pieces of 2m silicone tubing (id 2 mm, od 4 mm, Si 2-4). The Silicone 417 
tubing between pump and column could be closed with clamp C.II. The flow rate of medium 418 
over the column was set at 170 ml/h. 419 

The medium jar was closed with a 5-layered aluminum foil top prior to autoclaving. 5 420 
syringes with their plungers removed were punched through the aluminum foil and 4 were 421 
connected inside the jar to a 60 cm long silicone tubing (id 6 mm, od 8 mm, Si 6-8). The end of 422 
the tubing was weighted down with a glass pipet, in order to have the inlet remain at the bottom 423 
of the jar. The syringe barrels at the top of the jar were closed with small pieces of aluminum foil 424 
during autoclaving and attached to the Si 2-4 silicon inlet tubing prior to the start of the column 425 
run. The fifth syringe without its plunger and without silicon tubing was attached on the outside 426 
to Si 2-4 silicone tubing, with pressurized sterile air, to provide an overpressure of sterile air in 427 
the medium jar. The medium jar was filled with 20L autoclaved Yeast Nitrogen Base without 428 
amino acids (YNB) prior to autoclaving and was subsequently supplemented with 2% filter 429 
sterilized glucose. 430 

The effluent of the column goes down via silicone Si 2-4 tubing, passes a quick release 431 
connector, and goes up via silicone Si 4-6 tubing to an air chamber. The tubing can be closed 432 
with a clamp (C.III). The air chamber breaks the laminar medium flow, allowing the liquid to 433 
drip down via silicone Si 4-6 tubing into a waste jar (20L round HDPE bottle, Nalgene). The air 434 
chamber consists of a T-connector (od 10 mm, C T-10) connected at all 3 sides with 6 cm 435 
silicone Si 8-11 tubing and a tube connector. 436 
 437 
Loading the aging columns 438 

Prior to loading the columns with the biotinylated yeast cells, the system was primed with 439 
sterile medium for about 1 hour, having clamp C.I and C.III open. The medium flow was then 440 
stopped on the pump and clamps C.I and C.III were closed and clamp C.II opened. The quick 441 
release was opened and clamp C.III was shortly opened to lower the medium level to the iron 442 
meshwork. The column was detached from the tubing and the magnet and 2×109 cells were 443 
pipetted onto the column and gently sucked into the meshwork by a 5 ml syringe attached to the 444 
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stopcock below the column. The stopcock was closed, ~2ml fresh medium was pipetted on top of 445 
the column and the column was reattached to the tubing and placed in the magnet. Clamp C.I 446 
was opened and the medium flow was restarted. After some medium was collected on top of the 447 
column, clamp C.III was opened. Clamp C.II was kept open until the medium level above the 448 
column stabilized halfway in the tubing above the column. This level could be adjusted by the 449 
height of the air chamber in the effluent tubing (Figure 1–figure supplement 1B). The cells were 450 
kept surrounded by liquid media throughout all cultivation time. 451 
 452 
Harvesting aged yeast cells 453 

In order to harvest mother cells, the pump was stopped, clamps C.I and C.III were closed 454 
and clamp C.II opened. Only the specific pump tubing was disconnected from the pump, and the 455 
pump was restarted. The quick release was disconnected and by shortly opening clamp C.III, the 456 
medium level was lowered to just above the meshwork. The tubing on top of the column was 457 
detached and a 20 ml syringe was connected to the stopcock below the column. While keeping 458 
the column at the magnet, 15 ml fresh medium was provided on top of the column, while the 459 
column effluent was collected by the syringe. This step was repeated for 2 or 3 times, until the 460 
effluent was clear. This combined column effluent sample was kept on ice (effluent fraction, 461 
sample: Mix 3, Figure 2–figure supplement 3A). The column was detached from the magnet and 462 
again 15 ml fresh medium was provided on top of the column and the effluent was collected by a 463 
new syringe. This was repeated 2 or 3 times, until the medium was clear. This combined column 464 
fraction (column fraction, later to be split into Mix 1 and 2, Figure 2–figure supplement 3A) was 465 
also kept on ice. 466 

After harvesting, the samples consisted of mixes of aged mother cells, dead cells, and 467 
daughter cells. In order to obtain a higher purity of aged mother cells, an enrichment step was 468 
required for the column fraction. The cells were gently centrifuged (10 min 2500xG), 469 
resuspended in 7 ml cold PBS and transferred to a glass test tube. The test tube was placed in a 470 
magnet ("The Big Easy" EasySep™ Magnet, Stemcell technologies Inc.) for 5 minutes (Figure 471 
2–figure supplement 3A, panel II). The supernatant was removed by pipetting and the magnet 472 
bound cells were resuspended in fresh and cold PBS. This was repeated 2 times, at which time 473 
the supernatant was clear. The supernatant fractions were combined and kept on ice (wash 474 
fraction, sample: Mix 1). The cells that were retained in the magnet were resuspended in 2 ml 475 
PBS after removal from the magnet (mother enriched fraction, sample: Mix 2) (Figure 2–figure 476 
supplement 3A, panel III). The samples were pelleted by gentle centrifugation (4 min, 4°C, 477 
2500×G) and immediately snap frozen in liquid nitrogen. A small aliquot of each of three 478 
samples was kept aside to measure the fractions of live and dead cells, mother and daughter cells, 479 
and to obtain the cell count per sample. 480 
 481 
Harvesting timepoints 482 

Based on the population viability curves generated from the columns during test campaigns, 483 
the average lifespan of yeast being roughly 20-30 divisions, and the doubling time of the YSBN6 484 
strain being roughly 2 hours, it was decided to collect aged samples up to 72h of aging, with 485 
roughly 42% of viable cells expected in the last sample (Figure 1B). There is cell-to-cell 486 
variation in the replication rates of yeast and so with time the distribution of replicative ages per 487 
sample increase. These distributions were modelled based on the variation of the replication rates 488 
as quantified from single cell microfluidic data (unpublished data). In a mathematical model, a 489 
start culture of 1000 cells having a random replication rate according to a Poisson distribution 490 
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around an average replication rate of 0.5h-1 was allowed to replicate (and age) in time (Figure 1–491 
figure supplement 4). Consistent with our empirical observations counting bud scars in the 492 
population (Figure 1–figure supplement 2D), with increasing elapsed time, the distributions of 493 
the number of replications per cell became wider. Linearly spaced harvesting in time would 494 
cause increasing information overlap between neighboring time points, thus it was decided to 495 
harvest samples exponentially spaced in time (Figure 1–figure supplement 4). 496 

Finally, we performed two replicate runs of the column captured cell culturing campaigns. 497 
Campaign 1 generated an unprocessed sample and 14 column samples and replicate campaign 2 498 
generated another unprocessed sample and 8 column samples. In total, two unprocessed samples 499 
combined with 16 unique time points were generated (Figure 2–figure supplement 5).  500 
 501 
Flow cytometry analysis of sample composition  502 

In each sample the cells were counted on a BD Accuri™ C6 flowcytometer (Becton, 503 
Dickinson and Company, New Jersey, USA). To quantify the fractions of mother cells, dead 504 
cells, and daughter cells in the samples, the cells were stained with dyes and analyzed by flow 505 
cytometry using the BD Accuri™ C6. From each aliquot, 2×106 cells were pelleted and 506 
resuspended in 100 μl PBS, and simultaneously stained for 30 min at room temperature with 5 μl 507 
5mg/ml Fluorescein conjugated Avidin (AvF, Thermo Scientific, Rockford, USA) and 2μl 2mM 508 
Propidium Iodide (PI, Fluka/Sichma-Aldrich Co., St. Louis, MO, USA). Mother cells, which are 509 
biotinylated (see section Materials and methods, Preparing the cells for column captured 510 
culturing in aging columns), were stained with AvF, dead mother or dead daughter cells were 511 
stained with PI, live daughter cells remained unstained (Figure 1–figure supplement 5). The 512 
Fluorescein was excited by a laser of 488 nm wave length and detected in the range of 533 +/- 30 513 
nm, PI was excited by a laser of 488 nm and detected in the range of >670 nm. The beads were 514 
excluded from any analysis by gating (Figure 1–figure supplement 5B, left panels). The flow 515 
cytometer events were plotted for their PI and AvF intensities in a scatter plot, clear clusters for 516 
stained and unstained, both in PI and AvF channel, were apparent. The fractional enrichments 517 
were obtained in the BD CS AccuriTM C6 Software 1.0 (Figure 1–figure supplement 5). 518 
 519 
Validations of column captured cultivation 520 

Oxygen concentration in medium: The oxygen concentration was measured by using the 521 
Optical Oxygen Meter Fibox 3 (PreSens - Precision Sensing GmbH, Regensburg, Germany). The 522 
flow-cell, an oxygen-sensitive spot glued in a polystyrene tube, was connected to tubing in front 523 
of the aging column, to measure the O2 concentration in fresh medium and connected to the 524 
effluent tubing, to measure the O2 concentration in the column effluent. Each measurement was 525 
done within 10 minutes to avoid that the measurements were influenced by the accumulation of 526 
yeast cells in the flow-cell, which would alter readings. 527 

Glucose consumption on the column: The glucose concentration in the medium and in the 528 
column effluent was measured with a commercially available enzyme-based assay Enzytec™ 529 
fluid D-Glucose (Thermo Fisher Scientific GmbH). The column effluent samples were harvested 530 
by collecting medium from the column outlet, by opening the quick release below the column 531 
(Figure 1–figure supplement 1B and C). The column effluent sample was immediately placed on 532 
ice, shortly centrifuged (30s, >16k ×G) to remove the cells, and the glucose concentration was 533 
measured.  534 

Bud scar counting: The number of bud scars was counted using microscopy and 535 
evaluated from flow cytometery data.  536 
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For microscopy, 1×107 cells were resuspended in 0.5 ml PBS supplemented with 25 μl 537 
5mg/ml Alexa 633 labeled wheat germ agglutinin (WGA, Life Technologies), 50 μl 5 mg/ml 538 
AvF and 20 μl 2mM PI and incubated for 90 min at room temperature (see “Flow cytometry 539 
analysis of sample composition”). The images were taken on a commercial laser scanning 540 
microscope Zeiss LSM710 (Carl Zeiss, MicroImaging, Jena, Germany), using ZEN2010B 541 
software. The dyes were excited with different solid state lasers; PI and AvF were excited with a 542 
wavelength of 488 nm and emission was recorded between 607 – 797 and 493 – 564 nm 543 
wavelength, respectively; WGA-Alexa 633 was excited, with a wavelength of 633 nm and 544 
emission was recorded between 638 – 797 nm wavelength in a stack of 10 images with a z-545 
scaling of 0.8 micrometer (Figure 1D, inset). Only living mother cells were selected (containing 546 
AvF, without PI) and the bud scars were counted independently by two researchers. 547 

For flow cytometry, 2×106 cells were resuspended in 100 μl PBS supplemented with 7 μl 548 
5mg/ml WGA-Alexa 633 and incubated for 30 min at room temperature. The cells were excited 549 
in the flow cytometer by a laser with 640 nm wavelength and emission was recorded with a filter 550 
selecting for 675+/-25 nm. The mean fluorescence intensity for R2 is normalized to R1 t = 0h, to 551 
be plotted on the same scale (Figure 1D).  552 

Life span curve: For viability of mother (Avidin-FITC positive) and daughter (Avidin-553 
FITC negative) cells at each time point in the aging column, viability of the mother and daughter 554 
cells was assessed in each mixed-cell sample (derived from proportions of live (PI negative) and 555 
dead (PI positive) cells (Figure 1-figure supplement 5, Figure 2–figure supplement 3B)). These 556 
scores were weighted based on the number of cells present in each of these samples (derived 557 
from raw numbers as presented in Figure 1-figure supplement 3). This ensures that the viability 558 
of mothers and daughters (Figure 1C) reflects the entire population, since mothers and daughters 559 
in different mixed-cell samples may have slightly different ratios of live to dead cells. The 560 
microfluidic based lifespan curve was obtained from authors of [18], based on 2641 cells, plotted 561 
as viability versus time. 562 
 563 

 564 
Proteome analysis 565 
 566 
15N standards 567 

Protein extracts from isotopically labeled 15N YSBN6 yeast cells were used as an internal 568 
standard for the targeted Selected Reaction Monitoring (SRM) proteomics experiments. For the 569 
preparation of the 15N standards, yeast was cultivated in two 2.5L-fermentors on minimal or 570 
synthetic Verduyn medium [55], supplemented with 10 g/L glucose and using 15N-labeled 571 
(NH4)2SO4 as the sole nitrogen source. Cells were harvested in the different growth phases, 572 
namely the log phase (L), the deceleration phase (D) and the stationary phase (S, Figure 2–figure 573 
supplement 1A). Aliquots from all conditions were mixed (1:1:1) to maximize the coverage of 574 
targeted proteins. 575 
 576 
Cell lysis and protein extraction 577 

Cell pellets were resuspended in 1.85M sodium hydroxide plus 7.4 % v/v β-mercapto-578 
ethanol at a concentration of 1×108 cells per 100 µL and incubated for 10 minutes on ice. An 579 
equal volume of 100% w/v trichloric acid (TCA) was added and was subsequently incubated 10 580 
minutes on ice. The precipitated proteins were collected by centrifugation (16k×G, 10 min, 4 ˚C). 581 
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The pellet was washed with 200 µL cold acetone and incubated for 30 min at -20 ˚C. Finally, the 582 
protein pellet was collected by centrifugation (16×G, 10 min, 4 ˚C), and removal of supernatant. 583 
The precipitated proteins were resuspended in 100 µl 2% w/v sodium deoxycholate plus 100 mM 584 
ammonium bicarbonate (ABC) per 1×108 cells. For the targeted proteomics the 15N-labelled 585 
protein extracts were added in a 1:1 ratio, based on the cell counts. Samples were incubated for 5 586 
minutes at 90˚C to solubilize. Magnetic beads present in a subset of the samples were removed at 587 
this stage by collecting them on the commercially available magnet tube rack DynaMag™-2 588 
(Life Technologies/Thermo Fisher Scientific Co. Carlsbad, California, United States).  589 
 590 
Digestion and cleanup 591 

The solubilized proteins were reduced with 12 mM dithiothreitol (30 min at 55 ˚C) and 592 
alkylated with 40 mM iodoacetamide (45 min at 30 ˚C, in the dark). Samples were diluted with 593 
100 mM acetonitrile (ABC) to dilute the sodium deoxycholate to 1% w/v prior to overnight 594 
digestion with trypsin (1:100, sequencing grade modified trypsin V5111, Promega) at 37 ˚C. 595 
Then, 10% v/v formic acid (FA) was added to the solution to precipitate the deoxycholate, which 596 
was subsequently removed by centrifugation (16k ×G, 10 minutes). Cleanup prior to LC-MS 597 
analysis was done with C18-SPE columns (SPE C18-Aq 50 mg/1ml, Gracepure). This column 598 
was conditioned with 3× 1 ml ACN plus 0.1% v/v FA, and re-equilibrated with 3× 1 ml 0.1% v/v 599 
FA before application of the samples at a total amount of maximally 1 mg total protein per 600 
column. The bound peptides were washed with 2× 1ml 0.1% v/v FA and eluted with 3× 0.4 ml 601 
50% v/v ACN plus 0.1% v/v FA. The eluted fractions were dried under vacuum and resuspended 602 
in 0.1% v/v FA to a final concentration of around 1 µg/µul. 603 
 604 
Targeted proteomics (SRM) 605 

SRM analyses were performed on a triple quadrupole mass spectrometer with a 606 
nanoelectrospray ion source (TSQ Vantage, Thermo Scientific). Chromatographic separation of 607 
the peptides was performed by liquid chromatography on a nano UHPLC system (Ultimate 608 
UHPLC focused, Dionex) using a nano column (Acclaim PepMap100 C18, 75 µmx150mm 3µm, 609 
100 Å). Samples were injected at a total amount of 1 µg using the µl-pickup system using 0.1% 610 
v/v formic acid as transport liquid from a cooled autosampler (5 ˚C) and loaded onto a trap 611 
column (µPrecolumn cartridge, Acclaim PepMap100 C18, 5 µm, 100 Å, 300 µm id, 5 mm 612 
Dionex). Peptides were separated on the nano-LC column using a linear gradient from 3-45 % 613 
v/v ACN plus 0.1% v/v formic acid in 30 minutes at a flowrate of 0.3 μl/min. The mass 614 
spectrometer was operated in the positive mode at a spray voltage of 1500V, a capillary 615 
temperature of 270 ˚C, a half maximum peak width of 0.7 for Q1 and Q3, a collision gas 616 
pressure of 1.2 mTorr and a cycle time of 1.2 ms. The measurements were scheduled in windows 617 
of 4 minutes around the pre-determined retention time, with a maximum of 150 concurrent 618 
transitions.  619 

The MS traces were manually curated using the Skyline software [56]. The sum of all 620 
transition peak areas for the endogenous and standard (15N labeled) peptide was used to calculate 621 
the ratio between the endogenous and standard peptides. Only peptides that were minimally 622 
quantified with two transitions and with a peak area of the 15N standard above 10.000 for both 623 
technical replicates were considered for quantification. The ratios on protein level were 624 
calculated by averaging the ratio of all peptides per protein. In order to correct for global errors 625 
made in the protein concentration determination of either the endogenous samples or the 15N 626 
labeled standard, the median of all datasets were normalized to the same value. 627 
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Shotgun proteomics 628 
1 µg of peptides of each sample were subjected to LC–MS analysis using a dual pressure 629 

LTQ-Orbitrap Velos mass spectrometer connected to an electrospray ion source (Thermo Fisher 630 
Scientific) as described recently [57] with a few modifications. In brief, peptide separation was 631 
carried out using an EASY nLC-1000 system (Thermo Fisher Scientific) equipped with a RP-632 
HPLC column (75 μm × 45 cm) packed in-house with C18 resin (ReproSil-Pur C18–AQ, 1.9 μm 633 
resin; Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) using a linear gradient from 95% 634 
solvent A (0.15% formic acid, 2% acetonitrile) and 5% solvent B (98% acetonitrile, 0.15% 635 
formic acid) to 28% solvent B over 120 min at a flow rate of 0.2 μl/min. The data acquisition 636 
mode was set to obtain one high resolution MS scan in the FT part of the mass spectrometer at a 637 
resolution of 60,000 full width at half-maximum (at m/z 400) followed by MS/MS scans in the 638 
linear ion trap of the 20 most intense ions. The charged state screening modus was enabled to 639 
exclude unassigned and singly charged ions and the dynamic exclusion duration was set to 30s. 640 
The ion accumulation time was set to 300 ms (MS) and 50 ms (MS/MS). 641 

For label-free quantification, the generated raw files were imported into the Progenesis LC-642 
MS software (Nonlinear Dynamics, Version 4.0) and analyzed using the default parameter 643 
settings. MS/MS-data were exported directly from Progenesis LC-MS in mgf format and 644 
searched against a decoy database the forward and reverse sequences of the predicted proteome 645 
from S. cerevisae (SGD, download date: 15/6/2012, total of 13,590 entries) using MASCOT 646 
(version 2.4.0). The search criteria were set as follows: full tryptic specificity was required 647 
(cleavage after lysine or arginine residues); 3 missed cleavages were allowed; 648 
carbamidomethylation (C) was set as fixed modification; oxidation (M) as variable modification. 649 
The mass tolerance was set to 10 ppm for precursor ions and 0.6 Da for fragment ions. Results 650 
from the database search were imported into Progenesis and the final peptide feature list and the 651 
protein list containing the summed peak areas of all identified peptides for each protein, 652 
respectively, were exported from Progenesis LC-MS. Both lists were further statically analyzed 653 
using an in-house developed R script (SafeQuant) and the peptide and protein false discovery 654 
rate (FDR) was set to 1% using the number of reverse hits in the dataset [57]. 655 

 656 
 657 
Transcriptomics 658 
 659 
mRNA extraction 660 

For the extraction of mRNA from yeast, the RiboPure™ RNA Purification Kit, yeast 661 
(Ambion®, Life Technologies/Thermo Fisher Scientific Co. Carlsbad, California, United States) 662 
was used as described by the manufacturer. Frozen cell pellets of 3×107 cells were suspended in 663 
the lysis mixture. Vortexing was done by using the The Ambion® Vortex Adapter (Ambion®, 664 
Life Technologies/Thermo Fisher Scientific Co. Carlsbad, California, United States). The mRNA 665 
was collected in 70 μl elution solution. The quality and yield of the RNA was checked with a 666 
NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA USA). The 667 
samples were stored as 5 µg mRNA aliquots at -80 ˚C. 1 µl of 1:10 diluted mixture of 92 668 
polyadenylated non-yeast transcripts was added as a spike-in for sequencing quality control 669 
(ERCC RNA Spike-In control mix, Life Technologies, Carlsbad, California, United States) [58].  670 
 671 
  672 
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mRNA sequencing and mapping 673 
The mRNA was sequenced by ServiceXS (Leiden, The Netherlands). The quality and 674 

integrity of the RNA-samples was determined with a Nanodrop ND1000 spectrophotometer and 675 
analyzed on a RNA 6000 Lab-on-a-Chip using bioanalyzer (Agilent Technologies, Santa Clara, 676 
CA, USA). The cDNA libraries were generated by using the Illumina TruSeq mRNA-Seq 677 
Sample Prep Kit v2 (Illumina, San Diego, CA, USA). In short, mRNA was isolated from total 678 
RNA using the oligo-dT-magnetic beads, fragmented and cDNA synthesis was performed. The 679 
cDNA was ligated with the sequencing adapters and amplified by PCR. The quality of the 680 
amplified cDNA was measured with a DNA 1000 Lab-on-a-Chip. The fragment sizes ranged 681 
between 300 and 500 bp. 682 

The cDNA was clustered in the flow cell of the sequencer by an Illumina cBot and the 683 
sequencing was done on an Illumina HiSeq 2000. A cDNA concentration of 4.5 pM was used for 684 
sequencing, in two reads of 100 cycles each, controlled by the HiSeq control software HCS 685 
v2.0.12.0. Image analysis, base calling and quality checks were performed with the Illumina data 686 
analysis pipeline RTA v1.13.48 and/or OLB v1.9 and CASAVA v1.8.2. All data consisted of 687 
>0.9 Gb read depth and a quality Q30-score >80% per sample. One time point set, replicate 1 t10 688 
(26.8hrs), was excluded by this criteria. 689 

Reads were mapped to EF4 genome assembly using TopHat software v2.0.8 and gene 690 
annotation from Ensembl release 71. Per gene expression values were calculated using 691 
Cufflinks/Cuffdiff package v. 2.1.1. Data quality was assessed by principle component analysis 692 
on the resulting raw data of spike-in controls, and of all gene profiles. Outliers resulting from 693 
poor sequencing results in the spike-in (i.e., Figure 2-source data 2 Table S3.1, samples from 694 
replicate 1: t2_M_Feb and t7_EW_Feb) or the full genome profiles (i.e., Figure 2-source data 2  695 
Table S3.1, samples from replicate 2: t14_M_May, t14_D_May and t14_EW_May) were 696 
removed. As a result 3 time points were omitted: replicate 1 t2 (1hr), replicate 1 t7 (14hrs), 697 
replicate 2 t14 (53hrs)). In total, 4 time points were omitted.  698 

 699 
 700 

Data processing 701 
 702 
Mathematical unmixing 703 

Mathematical unmixing rests on the idea that a system of linear equations can be solved 704 
when (i) the number of equations is equal to the number of unknowns and (ii) these are 705 
independent (see supplemental note 1 below for terminology, explanation, and validation of the 706 
method). In our experiment this idea was implemented, for each time point, by means of a 707 
weighted ‘unmixing’ matrix (W) whose rows represent the fractions of cell types (i.e. mothers, 708 
dead, and daughter cells) in the harvested ‘mixed-cell samples’. The fractional composition of 709 
each mixed-cell sample was acquired by using flow cytometry on dye stained cells, using PI and 710 
AvF to assess the amount of live mother cells, dead cells, and daughter cells (see: Materials and 711 
Methods, Flow cytometry analysis of sample composition, and see Figure 2-source data 1 Table 712 
S2.f for each time point’s matrix).  713 

For the mathematical unmixing validation experiments, the fractional compositions of the 714 
mixed-cell samples were defined by mixing different pure cell sample types (i.e. log-phase, 715 
deceleration-phase, and stationary-phase cells) in known ratios. Protein and mRNA abundance 716 
values for the mixed-cell samples were measured by targeted (SRM) proteomics (for validation 717 
only) and shotgun proteomics (for validation and aging cells), or RNA seq transcriptomics (for 718 
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validation and aging cells). Equation (3), present in the supplemental note 1 below, was 719 
implemented using a custom R script for the actual unmixing procedure. Following the unmixing 720 
of the data, should the resulting data contain “unsolvable” entries (see supplemental note 1 721 
below), a data quality criteria was applied: at least five time points per time trace (0 hour – 72 722 
hour) should be solvable, otherwise the protein or transcript was removed from the dataset. In 723 
cases which passed this criteria but still contained one or more unsolvable entries in the time 724 
series, the missing data was linearly interpolated by the time points neighboring the data in 725 
question using the ‘approx’ interpolation function in R, implemented by the zoo package [59]. 726 
Datasets were subsequently normalized to one million for both the shotgun proteomes and 727 
transcriptomes. 728 

 729 
Correction for effect of beads 730 

A simple correction step accommodating for the specific protein losses caused by the 731 
presence of the beads was applied to the relevant data, and is explained in the supplemental note 732 
2 below. The loss was specific for a protein, highly reproducible and independent of the ratio of 733 
beads to cells (Figure 2–figure supplement 4). Briefly, a protein specific correction factor was 734 
calculated for each protein of the proteome from the difference between a sample with and 735 
without beads, averaged over 2 replicates. The correction was applied to the raw proteome 736 
datasets, prior to mathematical unmixing, and on all samples that contained beads. 737 
 738 
Selection of the young time point reference sample  739 

A young time point to compare aged cells to was selected and processed as described in the 740 
supplemental note 3 below. Briefly, the time series proteome and transcriptome data were 741 
standardized to the difference between the starting time point (7.8 hour in the column) and an 742 
unprocessed sample, and only data from 7.8 hour and later was considered in the analyses. This 743 
was done to avoid mislabeling any biological recovery from the biotinylation and loading 744 
procedure as being aging related and to maintain quantitative datasets for analysis. 745 
 746 
Data fitting and filtering 747 

For both the shotgun proteomes and transcriptomes, replicate datasets were fitted with a 748 
LOESS polynomial regression using a standard span value of 0.75 [60], using the replicates of 749 
unprocessed samples, and the replicate time series of 7.8 hour – 72 hour, as input for the 750 
regression. Final datasets were generated by resampling the regression fit at each time point 751 
physically sampled in the experiment (including those prior to 7.8 hour, for completeness and 752 
consistency). Datasets are available in Table S2.5a and S3.5a for each of the proteome and 753 
transcriptome supplementary Tables (Figure 2-source data 1 and 2). A noise threshold was 754 
applied to the time series datasets using the coefficient of variation between replicates with a 755 
cutoff of 0.3, corresponding to retention of 90.9% and 84.4% of the most reproducible data for 756 
the proteome and transcriptome, respectively (Figure 2–figure supplement 6) (dataset available 757 
in Figure 2-source data 3 and 4, Table S4 and S5). From this final dataset of 1494 proteins and 758 
4904 transcripts, 2 proteins and 2 transcripts contained a negative data point in their time series 759 
profiles, and were removed from both mother and daughter datasets in subsequent analyses. 760 
Unless specified otherwise (see network methods), the final datasets used for analyses consisted 761 
of the fitted regression data (Figure 2-source data 3 and 4, Table S4 and S5), from 7.8 hour of 762 
cultivation and later. 763 
 764 
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GO term selection and annotation 765 
Gene functional enrichments were determined by using the DAVID Bioinformatics 766 

Resources version 6.7 [61]. Corresponding background gene lists of indicated size (Figure 3-767 
source data 1 Table S6) were used for each enrichment analysis. Annotation clusters determined 768 
by DAVID (groupings of related genes based on the agreement of sharing similar annotation 769 
terms) having an enrichment score of > 0.5 were selected for consideration, if a GO term was 770 
enriched in the cluster with a p-value < 0.1. For larger datasets, a more stringent enrichment 771 
score cutoff of either > 0.9 or > 1.0 was used, as seen from lowest score cutoffs listed in the table 772 
below per analysis. A representative naming for the enrichment was selected after evaluation of 773 
the annotation cluster's GO terms (see Figure 3-source data 1 Table S6). Visualization of 774 
representative terms in clouds was made using the R wordcloud package [62] using the 775 
annotation cluster enrichment score as a size-scaling factor. If duplicate terms were present 776 
within a GO term enrichment list, the higher enrichment was used for visualization purposes. In 777 
one instance (the most responsive cluster of the proteome network) an unclear term (‘BNR 778 
repeat’) representing 3 genes was omitted even though it passed our criteria for inclusion. 779 

 780 
Protein complex deregulation 781 

A curated list of protein complexes derived from the ‘cellular component’ gene ontology 782 
was downloaded from yeastgenome.org [38]. Using the fold changes of gene products (i.e. either 783 
proteins or transcripts) at any given time point within a protein complex of interest, the degree of 784 
deregulation was assessed by measuring the interquartile of the distribution of the fold changes 785 
of the complex’s gene products. 786 

 787 
Network analysis 788 

To infer the high-level directional networks (Figure 6B, Figure 7–figure supplement 4B) 789 
and find causal relations, six data analysis steps (Figure 6–figure supplement 1A) were 790 
undertaken, as expanded upon below in the supplemental note 4. Briefly, these were: 1. Starting 791 
from the replicate datasets, the gene expression time series of both the transcriptome and 792 
proteome were filtered to remove flat and/or noisy profiles using the R package GPREGE [63]. 793 
2. The gene product networks (i.e transcriptome or proteome) were generated, based on the gene 794 
profiles of the respective time course data sets, using the R package GeneNet [35,64]. This 795 
included generating an undirected network by calculating the partial correlation among gene 796 
profiles (Figure 6–figure supplement 1B and C, Figure 7–figure supplement 4A). 3. Following 797 
this, a directed network was generated from the undirected network, based on an assessment of a 798 
gene profile’s ability to predict another gene profile (Figure 6–figure supplement 1D and E, 799 
Figure 7–figure supplement 4A) [35,64]. 4. The nodes in the network were clustered together, 800 
using the method in [65] using the R package igraph (Figure 6A, Figure 7–figure supplement 801 
4A) [34]. The causal in/out connections among genes were calculated for all the network clusters 802 
and listed in a direction matrix (listed in Figure 6-source data 1 Table S7). 5. A high-level 803 
directional network was generated, where the clusters are plotted in order of their causal ranking 804 
by drawing the direction matrix as arrows between the clusters. 6. A sensitivity analysis was 805 
made to determine the optimal sparsity of the networks and the cut-off for the partial correlation 806 
among gene profiles.  807 
 808 
 809 
 810 
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Figure legends: 811 
 812 
Figure 1. Experimental design for analysis of molecular changes during the replicative 813 
lifespan of yeast and its validation. (A) Schematic overview of the column-based cultivation 814 
and data analysis pipeline with 16 parallel columns, where (zoom in) mother cells (M) 815 
containing streptavidin-bound (green triangles) iron beads (black circles) are captured on the 816 
magnetized column and aged under constant environmental conditions, while the daughter cells 817 
(D) are flushed away. Samples are collected in two replicate campaigns (R1, R2) at indicated 818 
time points in the lifespan. (B) Flow-cytometry based assessment of viability of mother (Avidin-819 
FITC positive) and daughter (Avidin-FITC negative) cells in R1 and R2, calculated for each time 820 
point comparing viable (PI negative) vs inviable (PI positive) cells in harvested samples Mix 1-3 821 
(see figure 2A for explanation of Mix 1-3). Solid black line represents cell viability in time 822 
measured for the same strain in the same media using a microfluidic device [21] (data from [18] 823 
was obtained from the authors). (C) Cell size is qualitatively assessed with median forward 824 
scatter of live mothers (Avidin-FITC positive, PI negative) vs live daughters (Avidin-FITC and 825 
PI negative). Dashed line represents the median forward scatter of young cells that have reached 826 
the fully-grown cell size to start their first division. (D) Aging is qualitatively assessed 827 
throughout the experiment by observing an increase in median WGA intensity over time in a 828 
population of primarily mothers (Mix 2) compared to a sample composed primarily of daughters 829 
flushed out of the column (Mix 3). Inset: bright field (BF) and fluorescence microscopy image of 830 
cell stained with AlexaFluor 633 conjugated wheat-germ agglutinin (WGA) which selectively 831 
binds chitin in bud scars. Scale bar 5 μm. 832 
 833 

Figure 1–figure supplement 1. Setup of the aging columns. 834 
Figure 1–figure supplement 2. Cellular aging under constant conditions. 835 
Figure 1–figure supplement 3. Cell counts per timepoint. 836 
Figure 1–figure supplement 4. Simulated yeast aging population dynamics. 837 
Figure 1–figure supplement 5. Characterization of mixed-cell samples. 838 
Figure 1-source data 1. Table S1: Materials used for construction of novel column-based 839 
cultivation method. 840 

 841 
Figure 2. Mathematical unmixing of proteomes and transcriptomes in mixed-cell 842 
populations. (A) For each time-point in the aging experiment three samples (mixed-cell samples 843 
1,2,3; originating from different harvesting steps) and composed of different fractions of Mother 844 
(M, green), Daughter (D, blue) and Dead cells (De, red) were harvested and analyzed. On the 845 
basis of the compositions of the mixed-cell samples (wM,D,De) and the determined proteome or 846 
transcriptome data of the mixed-cell samples (Amix1,2,3), with the mathematical unmixing we 847 
obtained unmixed data (AM,D,S) over the time course of 72 hours, from 2 replicates. See Figure 1-848 
figure supplement 5 for details about determining the composition of the mixed-cell samples and 849 
Figure 2-figure supplement 3 for the un-mixing method. Data from proteome (B) and 850 
transcriptome (C) replicates highly correlated (Spearman correlation > 0.85) for mother (circles) 851 
and daughter cells (squares), indicating high reproducibility of the experimental and data 852 
processing pipelines. (D, E) Levels of random chosen proteins (D) and transcripts (E) from both 853 
replicate measurements (grey) and the fit (solid line) are indicated for unmixed mother data. Raw 854 
abundance is a measure of MS peak intensities (proteome) or Fragments Per Kilobase of 855 
transcript per Million mapped reads (FPKM) (transcriptome). 856 
 857 
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 858 
Figure 2–figure supplement 1. Validation of the mathematical un-mixing procedure. 859 
Figure 2–figure supplement 2. Validation of the mathematical un-mixing procedure, 860 

shotgun proteome and RNA sequencing. 861 
Figure 2–figure supplement 3. Generation and composition of the mixed-cell samples. 862 
Figure 2–figure supplement 4. Validation of the bead effect correction. 863 
Figure 2–figure supplement 5. Overview of the experimental pipeline. 864 
Figure 2–figure supplement 6. Selection of genes with highest similarity between replicates. 865 
Figure 2-source data 1. Table S2: The shotgun proteome data processing 866 
Figure 2-source data 2. Table S3: The transcriptome data processing 867 
Figure 2-source data 3. Table S4: The final shotgun proteome data 868 
Figure 2-source data 4. Table S5: The final transcriptome data 869 

 870 
Figure 3: The aging proteome. (A) The Spearman correlation at progressive time points 871 
compared to the young reference sample for the mother and daughter proteome shows a 872 
divergence away from a youthful state for the mother. (B) The numbers of proteins changing by 873 
at least two-fold from the reference (young) sample per time point. Blue and red bars and text 874 
represent changes that had not occurred previously, either up or down regulated, respectively. 875 
Grey bars and text are changes that already occurred at a previous time point. Gene functional 876 
enrichments per grouped time points were derived from Gene Ontologies and are scaled with 877 
significance of enrichment obtained by DAVID bioinformatics resource version 6.7 (scale bar, 878 
DAVID enrichment score see Materials and methods and Table S6 (Figure 3-source data 1)). 879 
 880 

Figure 3–figure supplement 1. The aging transcriptome diverges minimally from a young 881 
profile. 882 

Figure 3–figure supplement 2. Changes in mother-age dependent daughter profiles. 883 
Figure 3–figure supplement 3. Profiles that contribute to the enrichments of proteins 884 

changing more than 2 fold. 885 
Figure 3–figure supplement 4. Single protein profiles matching literature. 886 
Figure 3-source data 1. Table S6: Full lists of GO-term enrichment scores for all 887 

enrichment analyses. 888 
 889 
Figure 4: Protein profiles in aging yeast. (A) Expression profiles for the proteome were 890 
clustered using the Ward clustering algorithm and plotted in a dendrogram. Visualization of most 891 
prominent (red line in dendrogram) protein fold change profiles (log2 scale) occurring with age, 892 
showing up-regulated (cluster 1), down-regulated (cluster 2) and mainly flat (cluster 3) profiles. 893 
Gene functional enrichments per grouped time points were summarized into representative terms 894 
as in Figure 3B. (B) Unidirectional changes occurring with aging are illustrated with a heat map 895 
of the fold changes (log2 scale) of proteins in the aging mother compared to the young reference 896 
sample. 897 
 898 

Figure 4–figure supplement 1. Comparison of aging proteomes and transcriptomes.  899 
Figure 4–figure supplement 2. Analysis of two fold changes per time point in the aging 900 

transcriptome.  901 
Figure 4–figure supplement 3. Analysis of aging changes clustered by expression profile. 902 

 903 
 904 
 905 
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Figure 5: A post-transcriptional overrepresentation in protein biogenesis with aging. (A) A 906 
progressive uncoupling of the proteome from the transcriptome in time is apparent from the 907 
decreasing Spearman correlation between the two. (B) Co-expression map showing fold changes 908 
(log2) of 72h aged samples compared to the young reference, plotting the proteome versus the 909 
transcriptome. Quadrants 1 and 3 (Q1 and Q3) represent changes where the protein changes 910 
match their transcript changes (coupled), while quadrants 2 (Q2) and 4 (Q4) reflect opposite 911 
changes (uncoupled). Summarizing terms per quadrant are derived from Gene Ontologies as in 912 
Figure 3B (scale bar DAVID enrichment score).  913 
 914 

Figure 5–figure supplement 1. Correlation of proteome versus transcriptome using 915 
alternative statistical methods for comparison. 916 

Figure 5–figure supplement 2. Co-expression map showing fold changes of 10.7h, 22h, 45.4h 917 
and 72.3h compared to the young reference, highlighting gene products contributing to 918 
gene enrichments. 919 

Figure 5–figure supplement 3. Change in posttranscriptional protein overabundance with 920 
aging. 921 

 922 
Figure 6: Network inference identifies protein biogenesis related genes as causal force 923 
during aging. (A) The directed and clustered transcriptome network consists of 3631 edges, 924 
connecting 1241 nodes in 8 clusters (see Figure 6-figure supplement 1 and supplemental note 4 925 
for further details). Only actual relations are depicted, the causal direction between two nodes is 926 
indicated with an arrow, where the arrowhead points to the responsive node. (B) Clusters ranked 927 
from more causal to more responsive in the causality network (from blue to red for clusters 1 928 
through 8). The degree of causality is determined by the ratio of the outgoing over incoming 929 
connections per cluster (from A). The blue to red arrows indicate the sum of outgoing arrows 930 
between two clusters, where arrow thickness is logarithmically scaled to the number of arrows 931 
(from A), i.e. the summed predictive power of one cluster over the other. Summarizing terms per 932 
cluster are derived from Gene Ontologies as in Figure 3B (scale bar DAVID enrichment score). 933 

 934 
Figure 6–figure supplement 1. The transcriptome network. 935 
Figure 6–figure supplement 2. Network cluster gene enrichments in the co-expression map. 936 
Figure 6-source data 1. Table S7: The direction matrices and the sensitivity analyses for the 937 

proteomic and transcriptomic high-level directional networks.   938 
 939 
Figure 7: Loss of stoichiometry in protein complexes is a consequence during aging. (A) 940 
Illustrative representation of loss of stoichiometry within a protein complex (red, blue and green 941 
squares) during aging. Changing levels of proteins may be coordinated (left) or uncoordinated 942 
and result in a loss of complex stoichiometry (right). (B) Stoichiometry loss (for a single 943 
complex defined as the InterQuartile Range (IQR) of the distribution of fold changes of the 944 
components) is plotted for all complexes in proteome and transcriptome datasets as bean plots 945 
during aging. The genes in common between the datasets are used. Thick horizontal line 946 
represents the mean of the distribution of all complexes, thin colored lines the individual 947 
complexes’ stoichiometry loss, and the outline the distribution of all complexes. (C) Illustration 948 
of the loss of stoichiometry of protein complexes during aging for the proteome (grey lines), with 949 
specific examples highlighted (colored lines). (D) Illustration of the loss of protein stoichiometry 950 
in proteasome (left panel) and the vacuolar proton transporting V-type ATPase, V1 domain (right 951 
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panel). The protein abundance changes (log2-scale) of the complex’ components are plotted in 952 
time. The degree of stoichiometry loss is indicated with a box plot. 953 
 954 

Figure 7–figure supplement 1. Proteome data of distribution of changes within complexes in 955 
the cell.   956 

Figure 7–figure supplement 2. Transcriptome data of distribution of changes within 957 
complexes in the cell. 958 

Figure 7–figure supplement 3. Loss of stoichiometry occurring in the protein complexes. 959 
Figure 7–figure supplement 4. The proteome network.   960 

 961 
 962 
Supplemental figure legends: 963 
 964 
 965 
Figure 1–figure supplement 1. Setup of the aging columns. (A) Prior to being loaded on the 966 
aging column, the yeast cells are labeled with membrane impermeable Sulfo-NHS-LC-Biotin 967 
(step 1, green triangles). The LC-linker in Sulfo-NHS-LC-Biotin has a spacer arm length of 22.4 968 
Å. The NHS-ester forms a covalent amide bond with primary amine groups in the Lysines and at 969 
the N-termini of the yeast cell wall proteins. Streptavidin-coated magnetic beads (black circles, 970 
step 2) bind with high affinity to the biotin-labeled cells. (B) The side view of one column set up. 971 
Medium is pumped with a flow rate of 170 ml/h via air permeable silicone tubing (1) and a T-972 
connector (2) into the magnetized column holding the magnetic-bead-coupled yeast cells (3). 973 
The medium leaves the magnetized column via the U-shaped tubing below the column (4), a T-974 
connector (5) and the outlet tubing (6) into a waste jar (7). The medium level in the column is 975 
regulated with the air valve on top of the T-connector (2) in combination with the backpressure 976 
caused by medium in the U-shaped tubing after the column (4). To disrupt the steady laminar 977 
effluent flow, air was allowed to enter the system via T-connector (5). During incubation at the 978 
columns, the flow was started and clamp 1 (C.I) and clamp 3 (C.III) are open, while the air valve 979 
is closed (C.II).  (C) The items used to build the setup are presented in a simplified 2D view and 980 
listed in Figure 1-source data 1 Table S1. (D) 3D view of the magnet’s stand with two magnets 981 
present. 982 

Figure 1–figure supplement 2. Cellular aging under constant conditions. The aging columns 983 
maintain constant oxygen (A) and glucose (B) concentrations and pH (C) during cultivation. 984 
Oxygen concentration was determined using the Optical Oxygen Meter Fibox 3 in both fresh 985 
medium and the column effluent (A). Glucose concentration was determined by enzyme-based 986 
assay Enzytec™ fluid D-Glucose (B). The pH of the medium was measured by a conventional 987 
pH-meter in fresh medium (t = 0h) and in the column effluent after 24h and 48h in duplicate (C). 988 
(D) Fluorescence microscopy image of AlexaFluor 633 conjugated wheat-germ agglutinin 989 
(WGA) stained cells selectively staining chitin in bud scars. (E) Distribution of replicative ages 990 
of (n) cells in samples harvested at different time points as determined by counting bud scars in 991 
AlexaFluor 633-WGA labeled cells. The bud scars were counted double blind from confocal z-992 
stack images. (F) Numbers of cells per mixed-cell sample, per time point, and for each replicate. 993 

Figure 1-figure supplement 3. Cell counts per timepoint. The cell counts present in each 994 
mixed-cell sample harvested from each time point of the experiment. These values (along with 995 
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fractional compositions present in Figure 2-figure supplement 3B) were used to calculate the 996 
weighted lifespan curve presented in Figure 1B. 997 
 998 
Figure 1–figure supplement 4. Simulated yeast aging population dynamics. Due to 999 
biological cell-to-cell variation in cell division rates, the age distribution of a starting cohort of 1000 
cells increases at later time points. This results in an increasing overlap of ages in the mother cell 1001 
populations harvested at later time points, as modeled for a starting cohort of 1000 cells (see 1002 
methods: Harvesting time points). The age is indicated as the replication life span (RLS). (A) 1003 
shows the distribution of mother cell ages in samples harvested at indicated equally spaced time 1004 
points, (B) shows the distribution when samples are harvested at exponentially spaced time 1005 
points, minimizing the overlap of information between neighboring samples.  1006 
 1007 
Figure 1–figure supplement 5. Characterization of mixed-cell samples. (A) Cells were 1008 
stained with avidin conjugated FITC (AvF), which only labels cells coming from the initial 1009 
biotin labeled cohort (see Figure 1–figure supplement 1A), and with propidium iodide (PI), 1010 
which is permeable only to dead cells and fluoresces upon intercalation with DNA. (B) 1011 
Analyzing the stained samples on a flow cytometer clearly distinguishes the populations of dead 1012 
or alive mother cells and dead or alive daughter cells, based on fluorescence emission. 1013 
Quantification of these populations gives the fractional compositions of each mixed-cell sample 1014 
(Mix 1,2,3 in Figure 2-figure supplement 3) collected per time point. SSC-A is the FACS’ side 1015 
scatter area, FCS-A is the FACS’ forward scatter area, FL1-A is the FITC fluorescence emission 1016 
peak area, FL3-A is the PI fluorescence emission peak area.  1017 
 1018 
Figure 2–figure supplement 1. Validation of the mathematical un-mixing procedure. (A) 1019 
Schematic representation of samples used for validation of the mathematical un-mixing 1020 
procedure, taken from fermenter-grown yeast. Log-phase represents mid-exponential growth of 1021 
the culture (L), deceleration phase represents a decreased growth rate around the diauxic shift 1022 
(D), and stationary phase is a nutrient deprived culture (S). Each phase of cultivation has a 1023 
unique transcriptional and proteomic signature. (B) The abundance of 207 proteins was 1024 
measured with targeted (SRM) proteomics in the samples L, D and S, and in three mixed cell 1025 
samples composed of different ratios of L, D, and S. The protein abundance in the pure samples 1026 
and the abundance derived after mathematical un-mixing of the data obtained from the mixed 1027 
cell-sample is shown for 10 representative proteins of the 207 proteins. (C) As in B, for all 207 1028 
proteins.  1029 
 1030 
Figure 2–figure supplement 2. Validation of the mathematical un-mixing procedure, 1031 
shotgun proteome and RNA sequencing. (A) As in Figure 2–figure supplement 1C but now for 1032 
proteome data obtained by shotgun proteomics. The Pearson correlations are as high as 0.989, 1033 
0.992, and 0.993, for Log, Deceleration, and Stationary phase samples, respectively, in the log2 1034 
scale (top panels).  Bottom panels show the relative errors for all proteins quantified; the 1035 
abundance of the indicated number of proteins is recovered with less than 20% relative error. (B) 1036 
As in (A) but here for the mRNA seq transcriptome data showing Pearson correlations of 0.945, 1037 
0.956, and 0.801 for Log, Deceleration, and Stationary phase samples, respectively, in the log2 1038 
scale (top panels). The indicated numbers of transcripts were recovered with less than 20% 1039 
relative error (bottom panels). All abundances are plotted on a log2-scale.   1040 
 1041 
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Figure 2–figure supplement 3. Generation and composition of the mixed-cell samples. (A) I: 1042 
A cohort of cells with cell-wall attached beads is maintained in the magnetized column (magnet 1043 
1) and harvested at set time points (column fraction) when also a fraction with mainly daughter 1044 
cells is collected (column effluent, mix 3). II: The harvested column fraction was applied for 1045 
further enrichment on “The Big Easy" EasySep™ Magnet (magnet 2). The bead labeled aged 1046 
cells stay in the glass tube, while the non-bead labeled young cells are removed by pipetting. 1047 
This wash is repeated 3 times, resulting in a sample enriched for mothers (mother enriched; mix 1048 
2), and a wash fraction (wash, mix 1). The fractional population sizes of these three mixes, 1049 
schematically represented in III, were determined (See Figure 1–figure supplement 5) before 1050 
storage at -80°C. (B) The measured compositions of mother, daughters, and dead cells present in 1051 
each mixed-cell sample harvested from each time point of the experiment. These fractional 1052 
compositions were used in the mathematical un-mixing procedure. (C) Example of the 1053 
mathematical unmixing procedure: Hsp104 protein abundances (MS peak intensity) for each 1054 
time point in each of the mixed-cell samples (left panel) and the resulting unmixed abundances 1055 
visualized as fold changes on a log2-scale (right panel). 1056 
 1057 
Figure 2–figure supplement 4. Validation of the bead effect correction.  The effect of the 1058 
beads on the proteome was highly reproducible, regardless of the number of beads per sample, 1059 
and was unrelated to other biological stimuli applied on the cells. (A) Samples generated at 1060 
different steps during biotinylation, bead labeling, and harvesting were assessed for their 1061 
similarity to a sample which has undergone all processing steps (sample D), as would the starting 1062 
(bead labeled) sample of the experiment.  Using targeted (SRM) proteomics focusing on 74 1063 
proteins known to be either strongly affected or not affected when comparing a processed to an 1064 
unprocessed sample, we found that the presence of beads alone within a sample (sample G) was 1065 
enough to match the starting bead-labeled sample (sample D). The process of bead labeling itself 1066 
(sample ‘H’, where bead labeling conditions were mimicked) yielded proteomes that bared little 1067 
resemblance to our bead-containing samples. (B) Cells and bead counts from flow cytometry. A 1068 
cohort of 4.0×108 cells (pink bar, left) was labeled with beads, by adding a known number of 1069 
beads (4.8×108 beads, pink bar, right). The number of beads attached to a biotinylated cell 1070 
population (1.2×108) is the difference between free beads before (4.8×108 beads, pink bar, right) 1071 
and after bead-labeling (3.6×108 cells, gray bar, right). The number of cells with at least one bead 1072 
was counted after bead labeling and cell enrichment on a magnet (after bead labeling, 1.2×108, 1073 
gray bar, left). This yields on average 1.1 beads/cell. (C) The number of free beads and beads 1074 
attached to the cells was determined for each sample with flow cytometry. The ratio of bead to 1075 
cells increased maximally two fold in both replicates, most likely due to the detachment of cells 1076 
from beads while being cultivated in the aging columns. (D) To study the effect of a small 1077 
increase in bead concentration per sample we mixed unprocessed cells with different numbers of 1078 
beads and performed targeted (SRM) proteomics, using the same 74 proteins for assessment. The 1079 
median of the measured peak intensities decreased with an increase of beads per sample, 1080 
indicating a loss of proteins. (E) Nonetheless, we found that varying the amount of beads in the 1081 
sample in the range relevant to the aging experiment, did not alter the degree to which the sample 1082 
was changed by the presence of the beads. The Pearson correlation of these samples to the 1083 
standard (1.06 beads/cell) was higher than the correlation between two replicates of the standard. 1084 
We conclude that the bead effect is highly reproducible, and can be redressed with a correction 1085 
factor specific to each protein (See Supplementary text). 1086 
 1087 
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Figure 2–figure supplement 5. Overview of the experimental pipeline. Detailed view of the 1088 
experimental pipeline to depict number of samples collected and data processing steps. Up to 16 1089 
columns could be run simultaneously (cartoon of red magnet with column) and harvested 1090 
throughout the aging procedure (cartoon of lifespan curve, fraction surviving at each age). Time 1091 
points were exponentially spaced, and covered by two partially overlapping replicate campaigns 1092 
(R1 and R2, dots showing time points), of 14 and 8 time points, respectively. For each time 1093 
point, either two or three samples were required for mathematical unmixing of the population, 1094 
i.e. early time points (blue dots), contained mainly live mother and live daughter cells, without 1095 
mortality in the population, and therefore required only two samples for the mathematical 1096 
unmixing of 2 unknowns. While later time points (red dots), contained increasing levels of dead 1097 
cells, and required three samples for the mathematical unmixing of 3 unknowns. Replicate 1 1098 
consisted of an unprocessed sample, five time points requiring two samples for unmixing, and 9 1099 
time points requiring three samples for unmixing, totaling 38 samples. Replicate 2 had in the 1100 
same way 23 samples, and together the two replicates consisted of 61 samples, which were 1101 
processed with shotgun proteomics and RNAseq transcriptomics. After ‘omics’ data was 1102 
collected, a bead correction was applied to proteome data coming from samples containing beads 1103 
(see methods), and quality assessment of sequencing data removed 4 sets of samples from the 1104 
transcriptome (see methods). The subsequent 61 proteome samples and 50 transcriptome samples 1105 
were used for mathematical unmixing, which resulted in mother-specific data for the proteome 1106 
(R1, 15 time points, and R2, 9 time points) and transcriptome (R1, 12 time points, R2, 8 time 1107 
points). Corresponding daughter specific data also resulted from the unmixing procedure (not 1108 
depicted in schematic). Finally, a reference time point was selected (7.8 hours, see methods) and 1109 
the replicate datasets were merged to produce a single time series, for each of the proteome and 1110 
transcriptome, spanning 12 time points throughout the replicative lifespan of the cells.  1111 
 1112 
Figure 2–figure supplement 6. Selection of genes with highest similarity between replicates. 1113 
(A) The coefficient of variation was calculated between the replicate datasets for each gene-1114 
product profile and a cutoff of 0.3 was used to select the most reproducible expression profiles 1115 
between replicates, consisting of ~90.9% of the proteome, and ~84.4% the transcriptome 1116 
datasets. (B) Example of a gene profile having a coefficient of variation of 0.1 (top panels) and 1117 
coefficient of variation of 0.3, which just failed the cutoff for being included in the dataset 1118 
(bottom panels). Data shown for both proteome (left panels), and transcriptome (right panels), 1119 
with each replicate measurement (grey) and the fit (colored line). 1120 
 1121 
Figure 3–figure supplement 1. The aging transcriptome diverges minimally from a young 1122 
profile. Similar to Figure 3A, but for transcriptome. The Spearman correlation of the 1123 
transcriptomes of mother and daughter cells at different time point compared to that of a 1124 
reference (young) time point sample.  1125 
 1126 
Figure 3–figure supplement 2. Changes in mother-age dependent daughter profiles. Heat 1127 
maps (with row clustering based on Euclidean distance) showing changes for daughter profiles 1128 
of each mother-age dependent time point for both proteome (A) and transcriptome (B). Gene 1129 
functional enrichments were determined using David version 6.7 and summarized into 1130 
representative terms (see methods section for details). The enrichment score provided by David 1131 
for the summarized terms were used as a size-scaling factor for the text, with larger words being 1132 
more significantly enriched (scale bar DAVID enrichment score). Enriched terms are shown next 1133 
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to each respective heat map, for genes changing by at least two-fold when comparing the 1134 
daughter coming from the oldest mother age, to the daughter coming from the youngest mother 1135 
age. This resulted in 33 genes 2 fold upregulated and 40 genes 2 fold down regulated in the 1136 
proteome of 1494 proteins, and 31 genes upregulated and 190 genes down regulated in the 1137 
transcriptome of 4904 transcripts. Fold changes are plotted on a log2 scale. 1138 
 1139 
Figure 3–figure supplement 3. Profiles that contribute to the enrichments of proteins 1140 
changing more than 2 fold. Proteins contributing to the enrichment score for 1141 
‘stress.response.(General)’, or ‘glycolysis/gluconeogenesis’ that were increasing more than two 1142 
fold with age, or proteins contributing to the enrichment score for ‘mitochondria.(general)’ and 1143 
‘DNA.replication’ that were decreasing more than two fold with age were selected for 1144 
visualization (from Figure 3B). The fold changes are plotted on a log2 scale. 1145 
 1146 
Figure 3–figure supplement 4. Single protein profiles matching literature. Assessing the 1147 
protein dynamics on the single cell level that were reported in the literature to occur in aging 1148 
yeast shows agreement with our global-scale proteome dataset. Specifically, we see protein 1149 
levels of the stress related chaperone Hsp104 and the translation elongation factor Tef1 to 1150 
increase with aging as was shown using a microfluidic platform tracking single cells [29]. Using 1151 
another microfluidic platform and GFP-tagged Vph1 protein as a marker for the vacuole, it was 1152 
found that the vacuole increased in size more rapidly than the cell itself, suggesting a net 1153 
increase of Vph1 protein levels to occur in the aging cell [21]. Our data shows Vph1 levels to 1154 
increase with aging, in line with these observations. Furthermore, our proteome also captures the 1155 
subtle changes described to occur with the Tpo1 protein and aging, where a computational model 1156 
based on production and inheritance of the protein throughout aging predicted Tpo1 levels to 1157 
initially increase and to then gradually decrease with age [32]. A recent study looking at protein 1158 
abundances in young and old whole-cell extracts found that levels of the nucleoporins Nup116 1159 
and Nsp1 decrease with age, while Nup100 and Nup53 did not change significantly [30], and for 1160 
one other nucleoporin, Nup170, was shown that the levels increase with aging [31], which we all 1161 
also detect in our proteome data (Figure 7D). Three proteins whose overexpression results in 1162 
extended lifespan in yeast, Ras2 [33], Mxr1 [15], and Vma1 [28] were observed to decrease with 1163 
age. Literature references are according to main text reference numbering. 1164 
 1165 
Figure 4–figure supplement 1. Comparison of aging proteomes and transcriptomes. (A) 1166 
Heat maps (with row dendrograms based on Euclidean distance) of proteome (top panel) and 1167 
transcriptome (bottom panel) time series data, plotted as fold changes on a log2 scale. (B) The 1168 
raw abundances (log2 scale) for the proteome and transcriptome are plotted against one another 1169 
for young (left panel, age 7.8 hours) and old (right panel age 72 hours) cells.  1170 
 1171 
Figure 4–figure supplement 2. Analysis of two fold changes per time point in the aging 1172 
transcriptome. (A) The numbers of transcripts changing by at least two-fold from the reference 1173 
(young) sample per time point. Red and blue bars or text represent changes that had not occurred 1174 
previously, either up or down regulated, respectively. Grey bars or text are changes that already 1175 
occurred at a previous time point. Gene functional enrichments per grouped time points were 1176 
derived from Gene Ontologies and are scaled with significance of enrichment obtained by David 1177 
version 6.7 (scale bar DAVID enrichment score). (B) Profiles that contribute to the enrichments 1178 
of transcript changing more than 2 fold. Transcripts contributing to the enrichment score for 1179 
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‘integral.to.membrane’, or ‘sporulation’ that increased more than two fold with age, or 1180 
transcripts contributing to the enrichment score for ‘mitochondria.(respiration)’ and 1181 
‘mitochondria.(translation)’ that decreased more than two fold with age were selected for 1182 
visualization (from A). The fold changes are plotted on a log2 scale. 1183 
 1184 
Figure 4–figure supplement 3. Analysis of aging changes clustered by expression profile. 1185 
(A) Expression profiles for the transcriptome were clustered using the Ward clustering algorithm 1186 
and plotted in a dendrogram. Three expression profile groups were selected for characterization 1187 
(red vertical line). (B) The three most prominent profile expression clusters for the transcriptome 1188 
(left three panels), showing mainly down-regulated (cluster 1 and 2) and up-regulated (cluster 3) 1189 
profiles, and their average signature plotted relative to one another (right panel). Gene functional 1190 
enrichments per grouped time points were summarized into representative terms as in Figure 3B. 1191 
In one case (asterix, ‘translation regulation’), the enrichment value was scaled down (from 10.2) 1192 
to the score of the next most enriched term (5.0), for better legibility of the other terms (with first 1193 
three letters kept on the original scale). Transcript fold changes are plotted on a log2 scale. 1194 
 1195 
Figure 5–figure supplement 1. Correlation of proteome versus transcriptome using 1196 
alternative statistical methods for comparison. Comparison of the proteome versus the 1197 
transcriptome using the dataset of genes in common between the two. Using Pearson correlation 1198 
on the raw data, Pearson correlation on log2 transformed data, or Spearman or Kendall 1199 
correlations on the raw data, show similar results: a decreasing correlation of the proteome and 1200 
transcriptome with age. 1201 
 1202 
Figure 5–figure supplement 2. Co-expression map showing fold changes of 10.7h, 22h, 1203 
45.4h and 72.3h compared to the young reference, highlighting gene products contributing 1204 
to gene enrichments. Co-expression map as in Figure 5B, showing fold changes of proteins and 1205 
transcripts at 10.7h, 22h, 45.4h, and 72.3h aged time points compared to the young (7.8h) 1206 
reference sample. Genes contributing to enrichment scores of the most enriched processes per 1207 
quadrant at 72.3h of aging (sterol.biosynthesis from Q1, translation.regulation from Q2, 1208 
cortical.actin.cytoskeleton from Q3, and endoplasmic.reticulum from Q4) are shown highlighted 1209 
for each timepoint to illustrate their changes. The fold changes are plotted on a log2 scale. 1210 
 1211 
Figure 5–figure supplement 3. Change in posttranscriptional protein overabundance with 1212 
aging. The fold change in abundance of a protein compared to a reference (young) sample, 1213 
minus the fold change of its transcript, gives a quantity for its relative overabundance. Plotted in 1214 
time are the summed values for the gene products per quadrant of the co-expression map in 1215 
Figure 5B (grey points), and for all genes of the entire plot summed (black points). This shows a 1216 
net increase over time of total relative protein overabundance, and a distinct behavior per 1217 
quadrant.  1218 
 1219 
Figure 6–figure supplement 1. The transcriptome network. (A) Cartoon illustrating the 1220 
pipeline of the network analysis procedure, to go stepwise from gene expression time series (i.e. 1221 
a gene profile) towards a high-level causal network. First, only nodes that have related gene 1222 
profiles (based on partial correlations), as distinguished from all indirectly related gene profiles 1223 
(based on simple correlations), are connected in the network (see B below). Second, the 1224 
directionality of the arrows between two nodes was found by accounting for the relative 1225 
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reduction in the variability between the nodes. This revealed a causal relationship (see D below). 1226 
Third, highly interconnected nodes were clustered. Finally, based on the clusters and the average 1227 
directionality among the clusters, a high-level directional network was generated. For further 1228 
details regarding these steps see supplemental note 4. (B) A simulated example to highlight the 1229 
first step in (A), showing that the edge between nodes in the network depends on the partial 1230 
correlation between the gene profiles. Two transcript profiles (‘y’ and ‘z’) were based on a 1231 
computationally generated transcript profile (‘x’), forming a small artificial network with edges 1232 
between the nodes x and y in addition to x and z. While the simple correlations between all 1233 
profiles are high (>0.995), the partial correlations are only high for x with y and x with z (grey 1234 
dashed lines). Therefore, actual relations were only found from x to z and x to y (black edge). 1235 
We can thus retrieve the true network, by making use of the partial correlations. (C) The 1236 
undirected network for the transcriptome data. The edges between the nodes indicate only actual 1237 
relations (based on partial correlations) between transcript profiles. All edges connected without 1238 
partial correlations or nodes linked to the dataset without a partial correlation are omitted in this 1239 
network. (D) An example to highlight the second step in (A) that the directionality between two 1240 
transcript profiles was found by multiple testing of the standardized partial variances of the 1241 
nodes. The standardized partial variances is the variances once the effect of the related profiles 1242 
has been removed by regression analysis. For each of the connected node pairs (e.g. ‘m’ and ‘n’), 1243 
the direction goes from the profile with the highest standardized partial variance to the lowest. 1244 
Basically, for a profile with a lower standardized partial variance, much of its variability is 1245 
explained by the profiles connected to it, while for a profile with a high standardized partial 1246 
variance, less of its variability is explained by the profiles associated to it. The latter profile has 1247 
thus a higher ability to predict the first one than vice versa, and makes a profile with high 1248 
standardized variance causal over a profile with a low standardized variance. The directionality 1249 
is indicated as an arrow between the nodes. (E) The directed network for the transcriptome data.  1250 
The arrowhead is pointing to the responsive node. For the clustered directed network see Figure 1251 
6A and for the high level directional network see Figure 6B. 1252 
 1253 
Figure 6–figure supplement 2. Network cluster gene enrichments in the co-expression map. 1254 
(A) The genes represented in cluster 1 of the transcriptome networks (blue dots) were mapped on 1255 
the co-expression map (grey dots; Figure 5B). The percentage of the genes enriched in each of 1256 
the four Quadrants (Q1-4) is indicated, fold changes are plotted on a log2 scale (B) p-values for 1257 
the enrichment of the genes in each cluster of the network in the four quadrants; transcriptome 1258 
(top) and proteome (bottom). (C) The p-value for the enrichment of genes in each cluster in Q1 1259 
and Q3 together representing a ‘coupled’ change in protein and transcript levels (left panel), and 1260 
in quadrant Q2 and Q4 (uncoupled change) (right panel). A shift towards an uncoupled 1261 
phenotype in the ‘later’ network clusters is apparent. The p-values are plotted on a log10 scale.  1262 
 1263 
Figure 7–figure supplement 1. Proteome data of distribution of changes within complexes 1264 
in the cell.  A curated list of protein complexes derived from the ‘cellular component’ gene 1265 
ontology was downloaded from yeastgenome.org, and the horizontal box plots show the 1266 
distribution of fold changes (log2 scale) occurring in the complex when comparing proteome 1267 
data of the old (72 hours) sample to the young reference sample. Box-and-whisker plots are 1268 
presented as follows: The thick black line within the box is the median of the data, the box 1269 
extends to the upper and lower quartile of the dataset (i.e. to include 25% of the data above and 1270 
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below the median, respectively), whiskers (dashed lines) represent up to 1.5 times the upper or 1271 
lower quartiles and circles represent outliers. 1272 
 1273 
Figure 7–figure supplement 2. Transcriptome data of distribution of changes within 1274 
complexes in the cell. Same as Figure 7–figure supplement 1 but for the transcriptome data. 1275 
 1276 
Figure 7–figure supplement 3. Loss of stoichiometry occurring in the protein complexes. 1277 
(A) Comparison between mother cells and mother-age dependent daughter cells, loss of 1278 
stoichiometry within complexes. Bean plots showing the distribution of the loss of stoichiometry 1279 
for all complexes in the cell (same as in Figure 7B), at each time point throughout aging. Mother 1280 
and daughter cells plotted side by side, for the proteomes (left panel) and transcriptomes (right 1281 
panel), showing that the mother cells’ proteome undergoes a greater degree of loss of 1282 
stoichiometry within complexes than do mother-age dependent daughter cells. Stoichiometry 1283 
loss for a single complex is calculated as the interquartile of the distribution of fold changes 1284 
within the complex at any given time (i.e. the ‘box’ in Figure 7–figure supplement 1 and 2). 1285 
Bean plots are drawn as follows: Thick horizontal line represents the mean of the distribution of 1286 
all complexes, thin colored lines the individual complexes’ stoichiometry loss, and the outline 1287 
the distribution of all complexes. (B) Illustration of the loss of protein stoichiometry in the 1288 
vacuolar proton transportin V-type ATPase, V1 domain. The protein abundance changes (log2-1289 
scale) of the complex’ components are plotted in time. The degree of stoichiometry loss is 1290 
indicated with a box plot.  1291 
 1292 
Figure 7–figure supplement 4. The proteome network.  (A) Undirected, directed, and 1293 
clustered directed networks for the proteome dataset. The clustered directed network consists of 1294 
669 edges, connecting 493 nodes in 5 clusters. (B) These interactions are summarized in a causal 1295 
network: Clusters are ranked from more causal to more responsive (from blue to red for clusters 1296 
1 through 5, placed on a turquoise arrow that depicts ranking) in the causality network. The 1297 
degree of causality is determined by the ratio of the causal outgoing over incoming connections 1298 
per cluster (from A). The blue to red arrows indicate the sum of outgoing arrows between two 1299 
clusters (from A), i.e. the summed predictive power of one cluster over the other. Summarizing 1300 
terms per cluster are derived from Gene Ontologies as in Figure 3B (scale bar DAVID 1301 
enrichment score). 1302 
 1303 
 1304 
 1305 
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