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SUMMARY

Primary cilia are key sensory organelles that are
thought to be disassembled prior to mitosis. Inheri-
tance of the mother centriole, which nucleates the
primary cilium, in relation to asymmetric daughter
cell behavior has previously been studied. However,
the fate of the ciliary membrane upon cell division is
unknown. Here, we followed the ciliary membrane
in dividing embryonic neocortical stem cells and
cultured cells. Ciliary membrane attached to the
mother centriole was endocytosed at mitosis onset,
persisted through mitosis at one spindle pole, and
was asymmetrically inherited by one daughter cell,
which retained stem cell character. This daughter
re-established a primary cilium harboring an acti-
vated signal transducer earlier than the noninheriting
daughter. Centrosomal association of ciliary mem-
brane in dividing neural stem cells decreased at
late neurogenesis when these cells differentiate.
Our data imply that centrosome-associated ciliary
membrane acts as a determinant for the temporal-
spatial control of ciliogenesis.
INTRODUCTION

The primary cilium is an antenna-like projection of the cell that

consists of nine microtubule doublets surrounded by ciliary

membrane (CM). The primary cilium is nucleated at its base by

the basal body, consisting of the eldest centriole in the cell—

the mother centriole—with associated appendage proteins that

dock it to the plasma membrane (Garcia-Gonzalo and Reiter,

2012; Kim and Dynlacht, 2013; Seeley and Nachury, 2010).

Although the CM is continuous with the plasmamembrane, entry

of membrane proteins into the cilium is restricted (Nachury et al.,

2010; Reiter et al., 2012). Thus, the primary cilium forms a

separate cell compartment, providing a platform for several

extracellular signals, such as Sonic Hedgehog (Shh), an impor-

tant regulator of proliferation and embryonic patterning (Goetz

and Anderson, 2010).
A generally accepted concept is that primary cilia are disas-

sembled prior to mitosis so that the centrioles can function at

the poles of the mitotic spindle (Garcia-Gonzalo and Reiter,

2012; Kim and Dynlacht, 2013; Kim and Tsiokas, 2011; Seeley

and Nachury, 2010). At the end of cell division, the daughter

centriole of the previous cell cycle matures into a new mother

centriole and will, as the old mother centriole, nucleate a new

cilium in early G1 (Nigg and Stearns, 2011).

In the developing neocortex, a primary cilium extends from the

apical membrane of epithelial neural stem cells, called apical

progenitors (APs), into the lateral ventricle (Louvi and Grove,

2011). Here, the cilium is able to detect signals present in the

cerebrospinal fluid (CSF) (Lehtinen and Walsh, 2011). Upon

onset of neurogenesis, APs switch from symmetric proliferative

divisions to mainly asymmetric neurogenic divisions (Götz and

Huttner, 2005; Kriegstein and Alvarez-Buylla, 2009; Lancaster

and Knoblich, 2012). These APs produce neurons either directly

or via fate-restricted basal progenitors that delaminate from the

ventricular surface.

Asymmetric inheritance of the centrosome containing the

mother centriole into one daughter cell is linked to maintenance

of stem cell character in the Drosophila germline and the devel-

oping mouse neocortex (Pelletier and Yamashita, 2012, Yama-

shita et al., 2007, Wang et al., 2009). In addition, in cultured cells,

the daughter cell that inherits themother centriole reassembles a

cilium earlier than its sister cell (Anderson and Stearns, 2009).

Asynchronous cilium reformation was also observed in AP divi-

sions in the mouse neural tube by live imaging (Piotrowska-Nit-

sche and Caspary, 2012). This asynchrony differentially exposes

the daughter cells to primary cilium-transmitted signals (Ander-

son and Stearns, 2009; Piotrowska-Nitsche and Caspary, 2012).

These studies support the notion that inheritance of centro-

some-associated structures is involved in asymmetric regulation

of cell fate between daughter cells. The fate of one such struc-

ture, the CM, upon entry into mitosis is currently unknown.

Here, we have investigated the fate of the CM upon division of

mouse embryonic neocortical stem cells and cells in culture.

Our findings indicate that, contrary to previous concepts, pri-

mary cilia are not completely disassembled prior to mitosis.

Our study uncovers a yet unknown feature of cell division with

relevance for asymmetric daughter cell behavior that explains

the previously reported asynchrony in cilium re-establishment

and signaling between daughter cells.
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Figure 1. The Ciliary GTPase Arl13b Is Associated with One of the Centrosomes in Mitotic APs

(A) Confocal image of immunofluorescence for Arl13b (magenta) and g-tubulin (yellow) to outline primary cilia and the centrosome (long arrows) in APs in the E12.5

mouse dorsal telencephalon. Pan-cadherin (gray) marks junctions and lateral plasma membrane, and nuclei are stained with DAPI (cyan). Arrowheads indicate

the two centrosomes in a single mitotic AP. Insets to the right show single fluorescence and merged channels.

(B) Confocal images of single APs in progressive phases ofmitosis (DAPI, cyan) show association of Arl13b protein (arrows; magenta, lookup table [LUT]) with one

of the centrosomes (g-tubulin, gray). A ‘‘fire’’ LUT was used to show Arl13b signal intensities. Insets show cropped single and merged channels. Dashed lines

outline single mitotic APs. (A and B) All images are maximum projections with optical sections of 0.5 mm.

(C) Transmission electronmicrographs of single mitotic APs from E12.5 dorsal telencephalon at progressive stages of mitosis showingmembrane near a centriole

(black arrows). In the insets, magnifications of the CM (purple arrows), distal appendages (cyan arrowhead), and centriole (orange arrows) and a schematic

drawing of the CR are presented. Number indicates the serial section number; see Figure S1 for all serial sections.

(legend continued on next page)
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RESULTS

A Membrane Vesicle Containing the Ciliary GTPase
Arl13b Is Associated with the Centrosome in Mitotic
Apical Progenitors
The small GTPase ADP-ribosylation factor-like 13b (Arl13b) spe-

cifically associates with the CM via a palmitoyl moiety (Cevik

et al., 2010; Duldulao et al., 2009; Horner and Caspary, 2011).

As described previously, we found that Arl13b marks primary

cilia protruding from the apical membrane of APs in the devel-

oping mouse cortex (Figure 1A). In mitotic APs, we detected

Arl13b protein near one of the centrosomes of the spindle (Fig-

ure 1B). This centrosomal localization of Arl13b was observed

throughout mitosis in most dividing APs (Figures 1B and 1E).

We used electron microscopy (EM) to analyze the structural

basis of this subcellular Arl13b localization. Using conventional

transmission EM analysis (Figure 1C and Figure S1 available

online) as well as serial-block-face scanning EM (SBF-SEM; Fig-

ure 1F), we identified membraneous structures in close associa-

tion with one centriole of one spindle pole in the majority of

mitotic APs. These membrane structures characteristically

appeared as membranes enclosed by, or budding into, a larger

membrane vesicle (Figures 1C and S1). Moreover, the inner

membrane appeared to be anchored to the centriole via append-

ages similar to transitional fibers docking the basal body in

interphase cells to the plasma membrane, suggesting that

these structures constitute an intracellular ciliary remnant (CR)

(Figure S1). Indeed, the Arl13b-positive (Arl13b+) puncta seen

in immunofluorescence were observed to correspond to

centriole-attached immunogold-labeled membrane structures

(Figure 1D). Arl13b was mainly localized to the inner membrane

of these structures (Figures S2A–S2E). In some cases, the

Arl13b+ membrane appeared fragmented within the outer,

surrounding membrane (Figure S2E). We did not observe

specific Arl13b immunoreactivity directly on centrioles. Impor-

tantly, the frequency of centriole-associated membranes in

mitotic APs as detected by SBF-SEM (Figure 1F) was compara-

ble to that of centrosome-associated Arl13b as detected by

immunofluorescence (Figure 1E). Taken together, these data

show that, in most mitotic APs, an intracellular Arl13b+ CM is

attached to a centriole via appendages similar to those found

in interphase cilia.

TheArl13b+CiliaryMembrane Is Derived from theApical
Primary Cilium
To corroborate the ciliary identity of the Arl13b+ membrane, we

made use of two well-known ciliary transmembrane proteins,

namely, the somatostatin receptor 3 (Sstr3) and the serotonin
(D) Arl13b immunolocalization in correlative light (left; red) and electron (second to

LM image, the nucleus is counterstained with DAPI (blue). Boxed region in the sec

of the boxed region (middle panel) in two serial sections (number of the section

purple arrows), as well as the centrioles (orange arrows) are indicated.

(E) Quantitation of the percentage of mitotic APs showing centrosome-associated

extracted from Figure 5C.

(F) Quantitation of the percentage of mitotic APs showing CM or membrane ve

exposed cilia (yellow), on SBF-SEM at progressive stages of mitosis at E12.5.

Scale bars, 10 mm (A), 5 mm (B), and 1 mm (C and D) for overview pictures; 200 n
(5-hydroxytryptamine) receptor 5HT6 (Berbari et al., 2008). We

electroporated DNA constructs encoding EGFP-tagged versions

of these proteins into the developing mouse dorsolateral telen-

cephalon at E12.5 and analyzed dividing APs at E13.5.

As expected, Sstr3-EGFP localized specifically to the cilia of

APs at interphase (Figure 2A). In mitotic APs, Sstr3-EGFP was

localized close to one of the centrosomes and seemed to

enclose the Arl13b+ dot (Figure 2B). A similar localization was

observed for 5HT6-EGFP (data not shown). These results

strengthen our conclusion that the Arl13b+ membrane has ciliary

identity.

We next investigated whether the Arl13b+ membrane repre-

sents de novo synthesized CM or an internalized membrane-

containing remnant of the primary cilium present during

interphase. To explore the latter, we analyzed whether the

Arl13b+ dot contains CM that was internalized from the cell sur-

face at the onset of mitosis. We adopted a cell-surface bio-

tinylation approach that has previously been widely used in

endocytosis and recycling studies (Figure 2C). The apical sur-

face of the telencephalonwas biotinylated at 4�Cusing themem-

brane-impermeable Sulfo-NHS-SS-biotin (Figure 2C). Control

samples kept at 4�C to prevent membrane internalization

showed biotinylation (as detected by fluorescent streptavidin)

of the apical membrane and CM of APs (Figures 2D, S3A, and

S3B). No biotinylated membrane was detected at the centro-

some of mitotic APs in the control samples (Figures 2D, 2G,

S3C, S3D, and S3F). In contrast, analysis of mitotic APs in sam-

ples that were chased at 37�C for up to 3 hr showed the presence

of multiple intracellular biotinylated membrane dots. Only one of

these overlapped with the intracellular centrosome-associated

Arl13b+ membrane (Figures 2E, 2F, 2H, 2I, and S3H). These re-

sults show that the latter membrane had been internalized

from the cell surface.

Further support for this conclusion was obtained by SBF-

SEM. This revealed an entire primary cilium in a deep plasma

membrane invagination of an AP at the G2-M phase transition,

apparently undergoing endocytosis (Movie S1).

The Ciliary Membrane Remains Associated with the
Basal Body throughout Mitosis
The above data suggest that, in contrast to the generally

accepted concept that primary cilia are completely disas-

sembled for mitosis, the CM remains attached to the basal

body throughout mitosis. To further corroborate this, we exam-

ined the localization of the CM relative to the mature centriole-

specific proteins Cep164 (Graser et al., 2007; Sillibourne et al.,

2011) and ninein (Mogensen et al., 2000) in mitotic APs.

Cep164 localizes at the basal body distal appendages that
left to right; 10 nm immunogold) microscopy of an E12.5 metaphase AP. In the

ond image is magnified in themiddle panel. Right two panels are magnifications

indicated). Arl13b+ apical primary cilia (arrowheads) and CM (white, black and

Arl13b on immunofluorescence at progressive stages of mitosis at E12.5. Data

sicles (dark or light purple) directly associated with a centriole, and surface-

m for magnifications. See also Figures S1, S2, and Movie S1.
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Figure 2. The Arl13b+ Membrane Dot Constitutes an Internalized

Ciliary Remnant

(A and B) Confocal images of E13.5 mouse dorsal telencephalon with a single

AP (outlined by dashed lines) in interphase (A) or mitosis (B; n = 42), expressing
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anchor cilia in interphase cells (Graser et al., 2007; Sillibourne

et al., 2011). Ninein localizes at the subdistal appendages of

the mother centriole as well as the proximal end of both mother

and daughter centrioles (Mogensen et al., 2000). Cep164 and

ninein are retained at the older mother centriole during mitosis

(Graser et al., 2007; Mogensen et al., 2000). Furthermore, the

original daughter centriole slowly accumulates these proteins

as it matures into a new mother centriole during mitosis.

As expected, EGFP-tagged Cep164 and ninein were localized

at the distal end of the basal body (Figures 3A, left, and 3C, left).

Consistent with previous reports (Graser et al., 2007; Mogensen

et al., 2000), EGFP-Cep164 and EGFP-ninein showed a differ-

ence in signal intensity between the two poles of themitotic spin-

dle (Figures 3A, middle and right, 3B, 3C, right, 3D, and 3E). As

this signal difference very likely reflects the different age of the

centrioles, we assume that the centrosome containing the high-

est levels of Cep164 and ninein contains the older mother

centriole. Arl13b immunofluorescence showed that the intracel-

lular Arl13b+ CM was associated with the older mother centriole

in the majority of mitotic APs (Figures 3A, middle and right, 3B,

3C, right, 3D, and 3F). Together with the EM observations (Fig-

ures 1C and S1), these data indicate that the attachment of the

CM to the basal body through the distal appendages is main-

tained during mitosis.

Asymmetric Inheritance of the Ciliary Remnant by
Daughter Cells Is Linked to Early Cilium Reassembly in
Cell Lines
We next investigated whether persistence of centrosome-asso-

ciated CM during mitosis is present in cell types other than APs.

To this end, we analyzed Arl13b localization in human embryonic

kidney (HEK293T) and mouse neuroblastoma (Neuro2a) cells.

About 25% of HEK293T cells carried an Arl13b+ primary cilium

in interphase (Figures 4A and 4B). Similarly, about 25%ofmitotic

HEK293T cells showed Arl13b immunofluorescence near one
Sstr3-EGFP (magenta, LUT) and CAG-mCherry (gray). Nuclei are labeled with

DAPI (cyan), and g-tubulin (gray) and Arl13b (green) identify centrosomes and

CM (arrows in B), respectively. A ‘‘fire’’ LUT that visualizes pixel intensity is

used for Sstr3-EGFP. (A) Boxed region is magnified in the right panels. Dashed

circles in insets indicate position of the centrosome. Arrowheads indicate the

primary cilium. Maximum projection with 0.4 mm optical sections. (B) Single

optical sections of 0.4 mm. Magnifications on the right show single fluores-

cence and merged images.

(C) Experimental setup for cell-surface biotinylation and chase of APs.

(D–F) Confocal images of single mitotic APs (outlined by dashed lines) in

control samples incubated with biotin at 4�C (D; n = 12 mitotic APs) or in

chased samples cultured at 37�C after biotinylation (E and F; n = 24 mitotic

APs). Images show (immuno)fluorescence for g-tubulin (gray), Arl13b (green),

and streptavidin (magenta, LUT), with nuclei stained with DAPI (single DAPI

channel in insets). A ‘‘fire’’ LUT that visualizes pixel intensity is used for

streptavidin. CM is indicated by arrowheads in the overview pictures and

dashed circles in the insets. Insets show single immunofluorescence and

merged images. Images are single 0.4 mm optical sections.

(G–I) Fluorescence intensity plot profiles of Arl13b and streptavidin signals

along the white lines in (D–F). Arl13b signal plot was repositioned and rescaled

on the y axis to facilitate visualization. Gray boxes indicate the limits of the

Arl13b fluorescence signal.

Scale bars, 10 mm (A), 5 mm (B and D–F), and 1 mm (insets in A, B, and D–F). See

also Figure S3.



--
- -
- -
- -
-
- -
--

--
--

----------- - - - - - - - - - -

0

20

40

60

80

100

Cep
16

4

nin
ein

n=
32

n=
21

EGFP-nineinγ-tubulin

1 2

interphase metaphase
Signal

MC > DC 

A

C

B

D

E

prophase

 1
 2

LUT

pi
xe

l i
nt

en
si

ty

0

 1

centrosome 
 2

0

20

40

60

80

100

Cep
16

4

nin
ein

n=
13

n=
12

Ciliary membrane 
at MC

F

255Arl13b

γ-tubulin EGFP-Cep164

 1

centrosome 
 2

4.3 microns

1.9 m
icrons

4.3 microns

1.9 m
icrons

 1

centrosome 
 2

si
gn

al
 in

te
ns

ity
 

(A
.U

.)

si
gn

al
 in

te
ns

ity
 

(A
.U

.)

4.8 microns

3.0 m
icrons

si
gn

al
 in

te
ns

ity
 

(A
.U

.)
4.8 microns

3.0 m
icrons

si
gn

al
 in

te
ns

ity
 

(A
.U

.)

centrosome

p=0.021 p=0.0078

  D
A

P
Iγ

-t
ub

ul
in

 m
C

he
rr

y 
A

rl1
3b

   

γ-tubulin
m-Cherry

interphase

   
 D

A
P

Iγ
-t

ub
ul

in
 m

C
he

rr
y 

A
rl1

3b
   

(m-Cherry)

(m-Cherry)

centrosome 

1 2

1 2

1 2

1 2

1 2

M
ito

tic
 A

P
s 

w
ith

 
as

ym
m

et
ric

 s
ig

na
l (

%
)

 M
ito

tic
 A

P
s 

w
ith

 c
ili

ar
y

m
em

br
an

e 
at

 M
C

 (
%

)

metaphase

γ-tubulin

Arl13b

centrosome

m-Cherry
1 2

1 2

1 2

1 2

1 2

γ-tubulin

Arl13b
m-Cherry

Arl13b

γ-tubulin

Arl13b
m-Cherry

Arl13b

Figure 3. The Ciliary Membrane Remains Associated with the Mother Centriole-Containing Centrosome during Mitosis

(A) Confocal images of E13.5 APs expressing EGFP-Cep164 (magenta, LUT) and CAG-mCherry (gray). A ‘‘fire’’ LUT that visualizes pixel intensity is used for

EGFP-Cep164. Images show immunofluorescence for g-tubulin (gray) and Arl13b (green), with nuclei stained with DAPI (cyan), in interphase (left) and mitotic

(middle and right) APs.White arrows indicate primary cilia (left) or CMat centrosome 1 (middle and right). Yellow arrow indicates centrosome 2. Insets show single

and merged channel images. (left, middle) Maximum projection; (right) sum slices projection.

(B) Fluorescence signal intensity profiles of g-tubulin (left) and EGFP-Cep164 (right) for centrosome 1 and 2 (yellow dashed circles) as indicated in (A, right).

(C) Confocal images of E13.5 APs expressing EGFP-ninein (magenta, LUT) and CAG-mCherry (gray). Images show immunofluorescence for g-tubulin (gray) and

Arl13b (green), with nuclei stained with DAPI (cyan), in interphase (left) and mitotic (right) APs. A ‘‘fire’’ LUT that visualizes pixel intensity is used for EGFP-ninein.

Yellow arrowheads indicate EGFP-ninein localized at microtubules (C right, D right). White arrows indicate primary cilia (left) or CM at centrosome 1 (right). Yellow

arrow indicates centrosome 2. Insets show single and merged channel images. (Left) Maximum projection; (right) sum slices projection.

(D) Fluorescence signal intensity profiles of g-tubulin immunofluorescence (left) and EGFP-ninein signal (right) for centrosome 1 and 2 (yellow dashed circles) as

indicated in (C right).

(E) Quantification of the percentage of mitotic cells that showed a difference in average signal intensity (>25%) for EGFP-Cep164 and EGFP-ninein between the

centrosomes.

(F) Quantification of the percentage of cells showing association of the CM with the mother centriole over the total number of analyzed mitotic cells. A two-tailed

exact binomial probability test was performed with p values indicated. (E and F) MC, mother centriole; DC, daughter centriole.

Scale bars, 5 mm (A and C).
centrosome (Figures 4B and 4C). EM immunolocalization con-

firmed the presence of Arl13b+ CM in close vicinity to a centriole

(Figures S2F and S2G), similar to what was observed in mitotic

APs (Figures S2A–S2E). Similar findings were obtained by

Arl13b immunofluorescence of Neuro2a cells (data not shown).

These results indicate that the occurrence of a CR in mitotic

cells is not limited to embryonic neural stem cells but occurs in

a variety of cell types.

Previous studies have demonstrated a link between old

mother centriole inheritance and asynchronous cilium reforma-

tion (Anderson and Stearns, 2009; Piotrowska-Nitsche and
Caspary, 2012). Therefore, we investigated inheritance of the

CR and the timing of cilium reformation in pairs of daughter cells

by live imaging (Figures 4D and S4; Movie S2).

Imaging of interphaseHEK293T cells showed shortening of the

cilium (monitored using fluorescent protein-tagged Arl13b) prior

to entry into mitosis (Figure 4D; Movie S2). Upon entry into

mitosis, the CMwas internalized together with one of the centro-

somes (FigureS5A). ThisCRwas asymmetrically inherited by one

daughter cell in most divisions (Figures 4D, 4E, S4, and S5A;

Movie S2). Subsequently, a cilium was reformed within a few

hours in this daughter cell (daughter cell 1; Figures 4D–4F, S4,
Cell 155, 333–344, October 10, 2013 ª2013 Elsevier Inc. 337
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Figure 4. Asymmetric Inheritance of the Ciliary Remnant Is Linked to Early Cilium Reassembly in HEK293T Cells

(A) Overview confocal image showing Arl13b+ (magenta) primary cilia (arrowheads) and g-tubulin (gray) immunofluorescence of HEK293T cells.

(B) Quantification of the percentage of ciliated cells over total interphase cells (left; n = 2211 total cells) and of the percentage ofmitotic cells containing aCR (right;

n = 221 mitotic cells). Error bars represent SD.

(C) Confocal images of mitotic HEK293T cells showing Arl13b (magenta, LUT) and g-tubulin (gray) immunofluorescence, with nuclei counterstained with DAPI

(cyan). A ‘‘fire’’ LUT was used to visualize Arl13b signal intensity. Arrows indicate CM. Insets show single and merged channels. The centrosomes are numbered.

All images are maximum projections with single z plane of 0.4 mm.

(D) Still images (maximum projection) from time-lapse live imaging of HEK293T cells transfected with pArl13b-mKate2. Top row shows DIC images at the

indicated time points (hours:minutes). Bottom row shows CM (arrows) revealed by Arl13b-mKate2 (magenta, LUT). Dashed lines indicate the outline of the

dividing cell. Insets show magnifications of the CM.

(E) Quantification of all mitoses that were followed by cilium reassembly within the time of observation. D1 is defined as the CM-inheriting daughter cell 1; D2 is

defined as the daughter cell 2 that did not inherit the CM. Asynchronous versus synchronous reformation is defined as >1 hr or <1 hr difference, respectively, in

ciliary reassembly between the daughter cells. A two-tailed exact binomial probability test was performed with the p value indicated. For raw data, see Figure S4.

(F) Quantification of the ciliary reassembly times or the total time of observation without cilium reassembly. Data are represented asmean ±SEM, with the number

of daughter cells indicated. For raw data, see Figure S4. A two-tailed Mann-Whitney test was performed with p values indicated. DIC, differential interference

contrast; LUT, lookup table.

Scale bars, 10 mm (A and D) and 5 mm (C). See also Figures S1, S4, S5, and Movie S2.
and S5A; Movie S2). In contrast, only a few daughter cells that

had not inherited the CR (daughter cell 2) showed cilium reforma-

tion within the time of observation (Figures 4D–4F and S4), sug-

gesting that these cells formed a cilium either much later or not

at all. Comparison of the ciliary reassembly times between CR-

inheriting versus noninheriting daughter cells showed that ciliary

reformation occurred earlier in the former (Figure 4F). We

obtained similar observations by live imaging of Neuro2a cells

(data not shown). In addition, we corroborated the Arl13b live
338 Cell 155, 333–344, October 10, 2013 ª2013 Elsevier Inc.
imaging observations by using Sstr3-EGFP as another marker

of theCM in dividingHEK293T cells (Figure S5B). Together, these

data demonstrate that inheritance of the CR is linked to earlier

reassembly of the cilium in early G1 phase after mitosis.

Asymmetric Ciliary Remnant Inheritance Peaks during
Early Neurogenesis
At the onset of neurogenesis, APs switch from symmetric to

asymmetric divisions. We wondered whether asymmetric CR
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Figure 5. Centrosomal Association of the Ciliary Membrane in

Mitotic APs Decreases during Neurogenesis

(A) Confocal images of mitotic APs at E12.5 showing immunofluorescence for

Arl13b (magenta, LUT) and g-tubulin together with pan-cadherin indicating the

lateral plasma membrane (gray). A ‘‘fire’’ LUT was used to show Arl13b signal

intensities. The Arl13b+ membrane (arrows) displays three different patterns

relative to the centrosome. Insets show the single and merged channels.

Dashed lines outline single mitotic APs. All images are maximum projections

with 0.5 mm optical sections.

(B–E) The occurrence of the Arl13b localization patterns (see A and color key) in

mitotic APs at progressive stages of mitosis at E9.5 (B), E12.5 (C), E14.5 (D),

and E16.5 (E) is expressed over the total number of mitotic APs analyzed.

(F) Quantification of the subcellular Arl13b localization types as percentage

of total telophase APs from preneurogenesis to late neurogenesis. Black

line indicates the percentage of APs showing centrosomal association

(purple + red).

Scale bar, 5 mm (A).
inheritance is a hallmark of dividing APs at both preneurogenic

and neurogenic stages. Therefore, we examined the localization

of Arl13b relative to the centrosomes in mitotic APs at several

developmental stages (Figure 5). Prior to the onset of neurogen-

esis, as well as during early neurogenesis, Arl13b was localized

near one centrosome in most APs (Figures 5A, top-right panel;

5B, 5C, and 5F, purple). Moreover, a subset of mitotic APs

showed weak Arl13b staining next to the second centrosome

as well (Figures 5A, bottom-right panel, 5B, 5C, and 5F, red).

In contrast, at later neurogenic stages, most mitotic APs

showed Arl13b localization at some distance from either centro-

some (Figures 5A, bottom-left panel, 5D–5F, yellow). Upon

surface biotinylation and chase, we observed that this noncen-

trosomal form of CM in mitotic APs contains biotinylated mem-

brane derived from the surface of the cell (Figures S3E and

S3G), similar to centrosome-associated CM. Together, these

data show that persistence of the CR throughout mitosis occurs

most frequently at preneurogenic and early neurogenic stages.

In addition, they suggest that, as neurogenesis progresses, the

CM can lose its attachment to the old mother centriole during

mitosis.

Ciliary Remnant Inheritance Underlies Early Cilium
Reassembly in Primary Neural Stem Cells
We next investigated the asymmetric inheritance of the CR in AP

divisions by live imaging of organotypic slices of, and acutely

dissociated cells derived from, dorsolateral telencephalon (Fig-

ures 6A–6C). Prior to imaging, APs were electroporated in utero

with a combination of ciliary, centrosomal, and membrane

markers. In organotypic slices, we observed that the Arl13b+

CM was internalized at the G2-M phase transition, persisted

intracellularly through mitosis, and was asymmetrically inherited

by one daughter cell (Figure 6A).

In order to study the relationship between CR inheritance and

the timing of cilium reassembly in greater detail, we monitored

divisions of single dissociated APs and their progeny (Figures

6B–6F and S6A). First, we found that, similar to what we had

observed in fixed tissue (Figure 5), half of the dividing APs

showed asymmetric CR inheritance by one daughter at early

neurogenesis (E12.5; Figures 6B and 6D, left, purple; Movie

S3). The other APs showed (1) cilium disassembly followed by

CM degradation prior to the onset of mitosis, as suggested by

the loss of the Arl13b signal (Figure 6D, left, blue) or, in a few

cases, either (2) CM degradation during mitosis (Figures 6C

and 6D, left, green; Movie S4), or (3) dissociation of the CM

from the centrosome during mitosis followed by inheritance by

one daughter cell (Figure 6D, left, yellow; Movie S5). At later

stages of neurogenesis, fewer AP divisions showed CR inheri-

tance (E14.5–E15.5 Figure 6D, right, purple). At the same time,

an increased proportion of dividing APs showed either CM

degradation (Figure 6D, right, green), or its dissociation from

the centrosome (Figure 6D, right, yellow), during mitosis. Similar

observations were made using Sstr3-EGFP as a marker of CM

(Figure S6A).

Next, we compared cilium reformation in the daughter cells of

AP divisions with or without CR inheritance (Figures 6E and S6A).

In divisions with asymmetric CR inheritance, the CR-inheriting

daughter cell reformed a cilium significantly earlier than its
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Figure 6. Live Imaging Showing Ciliary

Membrane Inheritance and Asynchronous

Cilium Reformation in Dividing APs

(A) Still images (maximum projection) from time-

lapse live imaging of a single dividing AP in an

E14.5 organotypic slice expressing GAP43-GFP

(Golgi and plasma membrane; green) and EGFP-

Arl13b (CM; green; white arrows). Time intervals

between frames are indicated (hours:minutes).

CM inheritance into daughter cell 1 is indicated by

yellow arrows (n = 7). Dashed lines indicate the

outline of the mitotic cell. Blue dotted lines indicate

the apical surface. Insets show magnification of

CM. Box: Schematic drawing showing experi-

mental setup for (A) and (B–F).

(B and C) Still images (maximum projection) from

time-lapse live imaging of acutely dissociated APs

(E12.5) that express GAP43-GFP (plasma mem-

brane; green), EGFP-centrin2 (centrioles; green),

and Arl13b-mKate2 (CM; magenta LUT). A ‘‘fire’’

LUT was used to show Arl13b signal intensities.

Time intervals between frames are indicated

(hours:minutes). CM is indicated by white arrows,

and its inheritance into daughter cell 1 (B) is indi-

cated by yellow arrows. De novo assembled cilia

(B andC) are indicated by red arrows. Dashed lines

indicate the outline of the mitotic cells. Insets show

magnification of CM.

(D) Quantification of CM localization (see color key)

in mitotic dissociated APs at E12.5 (left) and

E14.5–E15.5 (right).

(E) Quantification of the ciliary reassembly time

and/or the total time of observation without cilium

reassembly in daughter cells 1 (CR-inheriting

and/or fast reassembly; black circles) and 2 (non-

CR-inheriting and slow reassembly; open circles)

of divisions with (purple) or without (blue/green)

CR inheritance at E12.5 (left) and E14.5–E15.5

(right).

(F) Quantification of the ciliary reassembly time

and/or the total time of observation without cilium

reassembly in centrosomal membrane-inheriting

(purple), noncentrosomal membrane-inheriting

(yellow), and noninheriting (blue/green) cells. Data

(purple, green/blue) are pooled from (E).

In (E) and (F), data are represented as mean ±

SEM, with the number of AP divisions indicated. A

two-tailed Mann-Whitney test was performed with

p values indicated. d1/d2, daughter cell 1/2; LUT,

lookup table; mem, membrane. Scale bars, 10 mm

(A–C) and 2 mm (insets in A–C). See also Figure S6A

and Movies S3, S4, and S5.
noninheriting sister cell, both at early and midneurogenic stages

(Figure 6E, purple). In contrast, there was no significant differ-

ence in the timing of cilium reformation between daughter cells

of divisions without CR inheritance (due to CM degradation; Fig-

ure 6E, green and blue). Comparing all CM-inheriting cells with all

noninheriting cells, cilium reformation occurred about three

times earlier in the former (62.2 ± 10.3 min versus 178.7 ±

18.9 min; Figure 6F). Interestingly, daughter cells inheriting non-
340 Cell 155, 333–344, October 10, 2013 ª2013 Elsevier Inc.
centrosomal CM, which disappeared shortly thereafter,

reformed a cilium later (151.2 ± 41.3 min; Figure 6F; Movie S5)

than daughter cells that inherited a centrosomal CM.

Taken together, these data demonstrate that the asymmetric

CR inheritance followed by earlier cilium reassembly occurs

also in primary embryonic neural stem cells. Moreover, the find-

ings that daughter cells without CM or with noncentrosomal CM

show delayed cilium reassembly, although one of the daughters



contains the old mother centriole, indicate that inheritance

of centrosome-associated CM underlies the earlier cilium

reassembly.

Remnant Inheritance Underlies Early Ciliary
Smoothened Accumulation
Previous studies have demonstrated that asynchronous cilium

reformation is linked to differential ciliary signaling between

daughter cells (Anderson and Stearns, 2009, Piotrowska-

Nitsche and Caspary, 2012). We wondered whether this

phenomenon is based on asymmetric inheritance of the CR.

Therefore, we investigated the ciliary accumulation of the trans-

membrane protein Smoothened (Smo), a well-known transducer

of Shh signaling (Robbins et al., 2012), in AP divisions with and

without CR inheritance (Figure S6B). Upon activation of Smo,

either through activation of the receptor Patched by the ligand

Shh or via direct activation by a Smo agonist (SAG), Smo trans-

locates from the plasmamembrane to the CM (Chen et al., 2002;

Frank-Kamenetsky et al., 2002; Rohatgi et al., 2007). Here, acti-

vated Smo can exert its downstream effects on processing of the

Gli transcription factors, ultimately leading to signal transduction

to the nucleus (Robbins et al., 2012).

We examined whether the asynchronous cilium reassembly

preceded by CR inheritance is accompanied by asynchronous

ciliary accumulation of activated Smo, using live imaging of

dissociated APs expressing EGFP-tagged Smo and Arl13b-

mKate, cultured in the absence (Figure 7C, left) or presence

(Figures 7A–7C, right) of SAG. As expected, treatment with

SAG induced ciliary accumulation of activated Smo-EGFP in

interphase (Figure 7C, right).

In AP divisions with CR inheritance, some Smo-EGFP per-

sisted as a fluorescent dot through mitosis and was asymmetri-

cally inherited, together with the Arl13b+ CM, by one daughter

cell that reassembled the cilium earlier than its noninheriting

sister cell (Figure 7A; Movie S6). Concomitantly, Smo-EGFP

accumulated significantly earlier in the cilium of the CR-inheriting

daughter cell (Figures 7A, 7D, and 7E, purple; Movie S6). In

contrast, in AP divisions without CR inheritance (due to degrada-

tion of the CM during mitosis), synchronous cilium reformation

and accumulation of ciliary Smo-EGFP in the two daughter cells

were observed (Figures 7B, 7D, and 7E, green; Movie S7).

Comparing all CR inheriting with all noninheriting daughter cells,

ciliary accumulation of Smo-EGFP occurred significantly earlier

in the former (80.4 ± 22.5min versus 153.5 ± 18.8min; Figure 7F).

As ciliary Smo regulates processing of the Gli transcription fac-

tors into activator form, it is plausible that this earlier ciliary

Smo accumulation may result in earlier Shh signaling activity.

We conclude that inheritance of the CR underlies asymmetric

ciliary signaling between daughter cells.

The Ciliary Remnant Is Preferentially Inherited by the
Stem Cell Daughter Cell
Previously, it was reported that in the developing mouse

neocortex, the elder centrioles are preferably inherited by the

daughter cells fated to remain APs (Wang et al., 2009). We

wondered whether the CM as an older mother centriole-associ-

ated structure is similarly preferentially inherited by the daughter

cell that will remain a stem cell. In asymmetric AP divisions, the
daughter cell that maintains stem cell character, rather than

that delaminating and assuming a neurogenic fate, is known to

inherit the basal process of the mother AP (Konno et al., 2008;

Shitamukai et al., 2011; Tsunekawa et al., 2012). We investigated

the inheritance of the CR relative to that of the basal process in

mitotic APs (Figures 7G–7I).

Most mitotic APs showed asymmetric distribution of the basal

process into one daughter cell (Figure 7G). We observed that in

AP divisions with such asymmetric basal process inheritance,

themajority of the daughter cells that inherited the basal process

also inherited the CM (Figure 7I). Such asymmetric coinheritance

of CM and basal process was observed for both centrosomal

(i.e., CR) and noncentrosomal CM. We conclude that upon

asymmetric AP division, the CR is preferentially inherited by

the daughter cell that retains stem cell character.

DISCUSSION

In this study, we have shown that CM typically remains attached

to the basal body/mother centriole through mitosis at one spin-

dle pole and is asymmetrically inherited by one daughter cell.

To our knowledge, such persistence of centriole-attached CM

in mitotic somatic cells has not been reported previously.

Our data challenge the generally accepted model in which the

primary cilium is completely disassembled prior to mitosis

(Garcia-Gonzalo and Reiter, 2012; Kim and Dynlacht, 2013;

Kim and Tsiokas, 2011; Seeley and Nachury, 2010). We find

that, at the G2-M phase transition, the shortening cilium is actu-

ally internalized with the basal body (Figure 7J). Because the

basal body/mother centriole maintains its attachment to the re-

maining CM, it serves a dual function as a basal body as well

as a part of one mitotic spindle pole. It was reported recently

that Drosophila spermatocytes assemble and retain cilia at all

centrioles through meiosis, showing that basal body function in

nucleating cilia is not incompatible with a function as a spindle

pole (Riparbelli et al., 2012).

Previous studies demonstrated that inheritance of the ‘‘old’’

mother centriole is linked to asymmetries in cilium reassembly

and ciliary signaling between daughter cells (Anderson and

Stearns, 2009; Piotrowska-Nitsche and Caspary, 2012). How-

ever, it was unclear which feature of the ‘‘old’’ versus ‘‘new’’

mother centriole is responsible for inducing these asymmetries.

Our study identifies the CM as a key structural component of the

‘‘old’’ mother centriole in mitotic cells. Furthermore, we show

that CR inheritance by one daughter cell underlies asymmetric

ciliary signaling between daughter cells.

Classical studies have demonstrated that ciliogenesis is initi-

ated either by Golgi-derived intracellular CM vesicles docking

to the mother centriole or by direct docking of the mother

centriole to the plasma membrane (Sorokin, 1962, 1968). Our

data uncover a pathway of ciliogenesis that does not involve

docking of the older mother centriole to a membrane. Specif-

ically, one of the daughter cells simply inherits the already

CM-bearing centriole from the mother cell and thus can directly

proceed with cilium outgrowth (Figure 7J, left and middle). In

contrast, the other daughter cell inheriting either the newmother

centriole or the old mother centriole without CM can proceed

with cilium outgrowth only after this centriole has docked to
Cell 155, 333–344, October 10, 2013 ª2013 Elsevier Inc. 341
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Figure 7. Asymmetric Inheritance of the

Ciliary Membrane Underlies Earlier Ciliary

Smoothened Accumulation and Is Linked

to Maintenance of Stem Cell Character

(A and B) Still images (maximum projection) from

time-lapse live imaging of acutely dissociated APs

(E14.5) expressing Smo-EGFP (magenta, LUT),

H-ras-mKate2 (plasma membrane; green) and

Arl13b-mKate2 (CM; green). A ‘‘fire’’ LUT was used

to show Smo-EGFP signal intensities. Time in-

tervals between frames are indicated (hours:

minutes). Ciliary localizedSmo is indicated bywhite

arrows and its inheritance into daughter cell 1 (A) is

indicated by yellow arrows. De novo ciliary accu-

mulation of Smo-EGFP is indicated by red arrows.

Dashed lines indicate the outline of themitotic cells.

Insets show magnifications of Arl13b (green; left),

Smo-EGFP (middle; LUT), and merged channels.

(C) Quantification of ciliary Smo localization (see

color key) with or without 100 nM of SAG.

(D) Quantification of AP divisions showing asyn-

chronous (Asy) or synchronous (Sy) Smo accu-

mulation after different modes of CM inheritance

(see color key). Asterisk indicates one AP division

with ciliary Smo accumulation in daughter cell 2

(without CM) first.

(E) Quantification of the time of ciliary Smo accu-

mulation or the total time of observation without

ciliary Smo accumulation, in daughter cells 1 (CR-

inheriting and/or fast reassembly; black circles)

and 2 (non-CR-inheriting and slow reassembly;

open circles) of AP divisions with (purple) or

without (green) CR inheritance.

(F) Quantification of the time of ciliary Smo accu-

mulation or the total time of observation without

ciliary Smo accumulation in CR-inheriting (black

circle) and noninheriting (gray square) cells. Data

(black circle) is the same as in (E); data (gray

square) are pooled from (E) (purple cell 2 and

green cell 1 and 2). (E and F) Data are represented

as mean ± SEM, with the number of AP divisions

indicated. A two-tailed Mann-Whitney test was

performed with p values indicated.

(G–I) E13.5 Dorsal telencephalon after in utero

electroporation at E12.5. (G) Maximum projection

images of a late telophase AP that expresses

GAP43-EGFP (plasma membrane, green), with

Arl13b (magenta, LUT) immunofluorescence and

DAPI nuclear staining (cyan; left panel). A ‘‘fire’’

lookup table (LUT) was used to show Arl13b signal

intensities. The CM (yellow arrows) and the

asymmetrically distributed basal process (white

arrows; 67% of all AP divisions) in daughter cell 1

are indicated. (H) Single optical sections (0.4 mm)

of the AP in (G) show the centrosomes (arrows;

g-tubulin immunofluorescence, gray) and CM (magenta, LUT) in daughter 1 and 2. (I) Quantification of asymmetric AP divisions showing CM inheritance in

basal process-inheriting and noninheriting daughters as a percentage of all asymmetrically dividing APs (centrosome-associated CM, purple, 35% of all

divisions; noncentrosomal CM, yellow, 16% of all divisions). The cartoon refers to the mitotic AP shown in (G).

(J) Model of the modes of CM and centriole inheritance and the subsequent ciliogenesis pathways in different types of AP divisions. Two possible outcomes exist

for the fate of the CM: (1) inheritance into one daughter cell through association with the old mother centriole, followed by apical ciliogenesis; and (2) dissociation

of the CM from the old mother centriole, followed by direct docking of the latter to the lateral membrane and basolateral ciliogenesis. For the original daughter

centriole that matures into the new mother centriole, two possible outcomes exist: (1) association of a de novo Golgi-derived CM vesicle to this centriole,

followed by apical ciliogenesis; and (2) no association of CM, followed by direct docking of this centriole to the lateral membrane and basolateral ciliogenesis.

AP, apical progenitor; BP, basal progenitor; bpc, basal process, d1/2, daughter cell 1/2, m, mother cell; mem, membrane. Scale bars, 10 mm (A and B),

2 mm (insets in A and B), and 5 mm (G). See also Figure S6B and Movies S6 and S7.
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either an intracellular membrane vesicle (Figure 7J, left) or the

plasma membrane (Figure 7J, middle; Sorokin, 1962, 1968).

We reported previously that nascent differentiating daughter

cells (basal progenitors, neurons) re-establish a cilium at their

basolateral plasma membrane prior to their delamination

(Wilsch-Bräuninger et al., 2012). This basolateral ciliogenesis

occurs by docking of a centriole to the lateral plasmamembrane,

whereas apical ciliogenesis in APs typically involves an intracel-

lular CM vesicle. Here, we show that the CR is preferentially in-

herited by the daughter cell that retains stem cell character.

The latter finding provides a plausible mechanistic explanation

for the previous observation that elder centrioles versus new

centrioles are preferentially inherited by AP versus differentiating

daughter cells, respectively (Wang et al., 2009). It is likely that the

spatial and temporal asymmetries in cilium reformation between

AP daughter cells differentially expose them to signals, such as

proliferative signals from the CSF. Therefore, we propose that

daughter cells that inherit the CR remain APs (Figure 7J, middle).

After division, the membrane of the CR will insert into the apical

plasma membrane either by direct exocytosis or by transcytosis

from the lateral membrane. In contrast, the centrosome contain-

ing the membraneless new mother centriole will directly dock to

the lateral membrane to nucleate a basolateral cilium de novo

(Figure 7J, middle), and the cell will subsequently delaminate

and differentiate.

Given that inheritance of the CR is always an asymmetric

event, an important question is whether and how this inheritance

is compatible with symmetric divisions. During neurogenesis,

two types of symmetric AP division exist. Symmetric proliferative

divisions that give rise to two AP daughter cells constitute the

principal type of division prior to neurogenesis and decrease in

frequency after its onset. In contrast, symmetric neurogenic divi-

sions that give rise to two differentiating daughters cells increase

in frequency toward the end of murine neurogenesis.

Specifically, the stage when Arl13b was most frequently de-

tected also at the second centrosome of mitotic APs was the

preneurogenic stage when symmetric proliferative divisions pre-

vail. We suggest that this Arl13b immunoreactivity reflects newly

synthesized apically destined CM.We propose that in symmetric

proliferative divisions, the newmother centriole is able to capture

Golgi-derived de novo CM (Figure 7J, left). This membrane

capturing can occur already during mitosis, in contrast to the

direct docking of the centriole at the plasma membrane that

can occur only after mitosis. Because apical Golgi-derivedmem-

brane trafficking is downregulated at the onset of neurogenesis

(Aaku-Saraste et al., 1997), we propose that APs lose the capac-

ity of capturing Golgi-derived membrane as neurogenesis pro-

gresses. Therefore, this property of early neural progenitors is

responsible for the earlier ciliogenesis in daughter cells inheriting

the new mother centriole in symmetric proliferative divisions at

early stages (Figure 7J, left) versus asymmetric (Figure 7J,

middle) and symmetric (Figure 7J, right) neurogenic divisions at

later stages.

We found that inheritance of CM occurs increasingly in non-

centrosomal form as neurogenesis progresses. This leads us

to propose that in symmetric neurogenic divisions, both (now

membraneless) centrosomes dock at the lateral membrane,

and de novo basolateral ciliogenesis occurs in both daughter
cells (Figure 7J, right). Subsequently, both daughters delaminate

from the ventricular surface and differentiate.

In conclusion, our study uncovers an additional feature of the

inherent asymmetries that exist between daughter cells due to

the differences in centriole age. Specifically, CR inheritance

emerges as an important means of establishing asymmetric

behavior between daughter cells.

EXPERIMENTAL PROCEDURES

Further details are provided in the Extended Experimental Procedures.

Mice and In Utero Electroporation

Wild-type C57BL/6 mouse embryos (E9.5–E16.5) were used. APs in E12.5–

E15.5 dorsal telencephalon were labeled by in utero electroporation,

followed (1) after 1 day by fixation and processing for immunofluorescence,

(2) after 5 hr by preparation of organotypic slice cultures, or (3) immediately

by preparation of dissociated cell cultures, both for live imaging. All animal

studies were conducted in accordance with German animal welfare legisla-

tion, and the necessary licenses obtained from the regional Ethical Commis-

sion for Animal Experimentation of Dresden, Germany.

Immunofluorescence and Electron Microscopy

Immunofluorescence on sections of paraformaldehyde-fixed dorsal telen-

cephalon and on methanol-fixed cell cultures was performed according to

standard methods. E12.5 dorsal telencephalon was analyzed by SBF-SEM

and by transmission EM, with pre- or postembedding Arl13b immunolabeling

and as combined correlative light and electron microscopy as indicated.

Cell-Surface Biotinylation

For cell-surface biotinylation of the apical plasma membrane of APs, the ven-

tricular surface of E14.5 telencephalon was exposed to a membrane-imper-

meable, crosslinker-bearing biotin at 4�C, followed by chase at 37�C, fixation,
and combined biotin detection/immunofluorescence.

Live Imaging

Cultures of organotypic slices and dissociated cells prepared from dorsal

telencephalon and HEK293T cell cultures, expressing various fluorescent

protein-tagged markers were subjected to live imaging using 10–15 min

time-lapse intervals.

Statistical Analysis

For the data shown in Figures 4F, 6E, 6F, 7E, and 7F, a two-tailed nonpara-

metric Mann-Whitney test was performed using Prism software (GraphPad).

For the data shown in Figures 3F, 4E, and 7I, a two-tailed exact binomial prob-

ability test assuming normal distribution was performed with a 0.5 random

probability for CR inheritance by, or ciliogenesis in, a specific daughter cell

by chance. Significance was assumed when p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and seven movies and can be found with this article online at http://

dx.doi.org/10.1016/j.cell.2013.08.060.
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