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Abstract

During vertebrate development, a wide variety of cell types and
tissues emerge from a single fertilized oocyte. One of these tissues,
the central nervous system, contains many types of neurons and glial
cells that were born during the period of embryonic and post-natal
neuro- and gliogenesis. As to neurogenesis, neural progenitors initially
divide symmetrically to expand their pool and switch to asymmetric
neurogenic divisions at the onset of neurogenesis. This process
involves various mechanisms involving intrinsic as well as extrinsic
factors. Here, we discuss the recent advances and insights into
regulation of neurogenesis in the developing vertebrate central
nervous system. Topics include mechanisms of (a)symmetric cell
division, transcriptional and epigenetic regulation, and signaling
pathways, using mostly examples from the developing mammalian
neocortex.
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Introduction

During early development of the vertebrate embryo, neural fate is

induced in the ectoderm by the underlying notochord. Subsequently,

the neural plate undergoes patterning of the future distinctive CNS

regions as well as neurulation to form the neural tube. The neural tube

wall constitutes a pseudostratified epithelium as it is made up of NECs

that move their nuclei depending on the cell cycle phase. Prior to divi-

sion, NECs move their nuclei to the ventricular surface for mitosis to

occur. At the onset of neurogenesis, these cells switch their identity

and turn into RGCs that will generate, directly or indirectly, all neurons

and later in development, glial cells (Fig 1).

Transition from neuroepithelial to radial glial cells

NECs and RGCs, collectively referred to as APs, portray apico-

basal polarity, with apical and basal processes that span the

neuroepithelium. As NECs turn into RGCs, they downregulate Golgi-

derived apical trafficking, lose tight junctions but maintain adherens

junctions. Also, they initiate the expression of astroglial markers

such as GLAST and BLBP. The mechanisms underlying NEC to RGC

transition are only partially understood. Expression of members of

the bHLH transcription factor Hes family, as well as transient

expression of Fgf10, is necessary for this transition [1,2].

At the onset of neurogenesis, RGCs switch from symmetric to

asymmetric divisions, giving rise to an RGC daughter cell and a

differentiating cell (Fig 2A, B). This latter cell constitutes a neuron,

or in certain areas of the brain such as the neocortex, a more fate-

restricted type of progenitor that is called IP and is one of the

types of BPs. IPs divide mainly symmetrically to yield two

neurons, thus doubling the neuron output. In some more

expanded brain regions, such as the neocortex in mammals, there

are additional BPs present with glial characteristics that are capa-

ble of self-renewal (see below). These progenitors are proposed to

mediate cortical expansion in some mammals during evolution [3]

(see below).

Cellular features of neural progenitors

Neural progenitor cells (NPCs) such as NECs and RGCs are highly

polarized, with their apical membrane exposed to the ventricle and

their basal side contacting the pial basal membrane (Fig 1).

Apical domain
The apical domain of RGCs contains several features that are impor-

tant for RGC function. Just basal to the apical and subapical plasma

membrane, the AJs mediate cell–cell adhesion. AJs consist of cadhe-

rins and catenins that connect to the intracellular actin network.

Importantly, polarity proteins such as Par3, Par6, and aPKC are

associated with the subapical cell cortex and are important for RGC

proliferation [4]. The Rho GTPases RhoA, cdc42, and Rac1 have

important roles in the maintenance of AJs and apical mitoses by

the regulation of actin [5–9]. The apical plasma membrane is
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characterized by a specific composition of membrane constituents.

The resulting apical polarity is essential for NPC function.

Newborn neurogenic daughter cells need to withdraw their apical

endfoot from the apical belt of AJs in order to migrate basally and

differentiate. Proneural genes expressed in the differentiating daugh-

ter cell induce downregulation of cadherins to mediate delamination

from the ventricular surface, in a manner similar to epithelial–

mesenchymal transition in other epithelia [10,11]. An alternative

mechanism for delamination recently observed in chick and mouse

neural tube is abscission of the apical endfoot that is similarly regu-

lated by proneural genes acting upstream of cadherin and other

factors [12]. In this process, actomyosin-dependent constriction of

the apical process, preceded by dissociation of the centrosome from

the apical primary cilium, leads to abscission of the apical process

from the apical-most portion of the apical endfoot [12]. In this way,

the cell loses its apical polarity and ciliary proteins, which contrib-

utes to its subsequent cell cycle exit and differentiation.

At the apical side, the centrosome is docked at the apical plasma

membrane. Here, it functions as the basal body in nucleation of the

primary cilium, an important sensory organelle that detects signals

in the ventricular fluid/CSF such as IGF and Shh [13,14]. Primary

cilium activity is required for maintaining proper apicobasal polarity

as NECs transform into RGCs [15]. Upon disruption of Arl13b, a

small ciliary GTPase, during NEC to RGC transition, the polarity of

the cortical wall is inverted, with mitoses occurring at the pial

surface and neurons migrating to the ventricular surface [15]. After

onset of neurogenesis, primary cilium function in processing of the

transcriptional repressor Gli3R is involved in the regulation of RGC

proliferation [16] (see also below).

Basal process

The basal process of RGCs stretches all the way to the basal lamina

at the pial surface. Recent studies have shown that the basal process

is important in the maintenance of proliferative capacity through

integrin signaling from the basal lamina and via the specific basal

localization of the G1-S-phase regulator CyclinD2 [17–19]. It is

hypothesized that the presence of a basal process is involved in the

continued proliferative capacity of bRGs that are present in gyren-

cephalic brains [17].

Cell cycle kinetics of RGCs
Prior to mitosis, in G2, the RGC nucleus moves to the ventricular

surface where the centrosome is docked. This nuclear movement is

part of INM in which the NEC/RGC nucleus moves in concert with

the cell cycle using actomyosin and microtubule motor proteins

[20]. It has been proposed that INM functions to maximize the

number of RGC mitoses at the small ventricular surface [20].

Another possible function of INM is to differentially expose the RGC

nucleus to signals that are present along an apical–basal gradient,

such as Delta-Notch signaling (see below). Recently, it was demon-

strated that dynein recruitment to the nuclear pore through two

consequential mechanisms is required for apical nuclear movement

and mitotic entry of rat RGCs [21]. Interestingly, nuclear pore

complexes were also necessary for the basal movement of the

centrosome, which occurs just prior to prophase [21,22].

Changes in cell cycle length have been implicated in cell fate

determination during neurogenesis [23]. The duration of the RGC cell

cycle changes during brain development, with an increased G1 phase

length being linked to neurogenic divisions [24–26]. Interestingly,

the S-phase of RGCs that undergo proliferative divisions is longer

than that of RGCs undergoing neurogenic divisions, suggesting that

careful control of DNA replication takes place during the S-phase of

expanding RGCs [24]. Conversely, one may speculate that somatic

mutations that occur in RGCs after their switch to asymmetric self-

renewing/neurogenic divisions due to the lack of correction of DNA

replication errors may be a means of increasing neuronal diversity.

Regulation of symmetric versus asymmetric divisions

Mitotic spindle orientation
After onset of neurogenesis, RGCs divide mainly asymmetrically

yielding one RGC daughter and a differentiating daughter cell

(Fig 2B). In invertebrates such as Drosophila, asymmetric division

has been shown to result from unequal division of cellular

Glossary

AJ adherens junctions
AP apical progenitor
aPKC atypical protein kinase C
Ascl1 Achaete-scute homolog 1
bHLH basic helix-loop-helix
BLBP brain lipid-binding protein
BMP bone morphogenetic protein
BP basal progenitor
bRG basal radial glia
CNS central nervous system
CSF cerebrospinal fluid
Cux2 Cut-like homeobox 2
ECM extracellular matrix
Fezf2 forebrain embryonic zinc finger-like protein 2
Fgf fibroblast growth factor
GFAP glial fibrillary acidic protein
GLAST glial high-affinity glutamate transporter
Hes hairy/enhancer of split
IGF insulin growth factor
INM interkinetic nuclear migration
Insc Inscuteable
IP intermediate progenitor
LGN Leu-Gly-Asn repeat-enriched protein
lncRNA long non-coding RNA
miRNA microRNA
Myc myelocytomatosis oncogene
Ndel1 NudE neurodevelopment protein 1-like 1
NEC neuroepithelial cell
Nfia Nuclear factor Ia
Ngn Neurogenin
NICD Notch intracellular domain
NPC neural progenitor cell
oRG outer radial glia
OSVZ outer subventricular zone
Par partition defective complex protein
RGC radial glial cell
saRGC subapical radial glial cell
Shh Sonic Hedgehog
SNP short neural precursor
Trim32 tripartite motif containing 32
Trnp1 TMF1-regulated nuclear protein 1
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components and cell fate determinants through horizontal cleavage

planes (Fig 2C, right).

In the vertebrate developing brain, early RGC divisions feature

cleavage planes perpendicular to the ventricular surface (vertical

cleavage, Fig 2B, C left). The spindle orientation of symmetric RGC

divisions is tightly regulated by mechanisms involving the centro-

somes, astral microtubule positioning, and interaction with proteins

present at the cell cortex [27]. The mitotic spindle is anchored to the

cell cortex by astral microtubules via dynein and the LGN/Gai/
NuMa complex. Localization of the LGN complex components to

the lateral membrane of NECs/RGCs is essential for maintaining

early symmetric RGC divisions in vertebrate neurogenesis (Fig 2C,

left) [28–30]. In addition, Lis1, a gene that causes lissencephaly

(“smooth” brain) in humans when mutated, mediates capture of the

astral microtubules by the cell cortex through interaction with

dynein and Ndel1 [31]. Perturbation of the Lis1/Ndel1 complex

severely disrupts the expansion of the NEC/RGC pool by inducing

random cleavage planes [31–33].

In asymmetric divisions in Drosophila, Insc induces horizontal

cleavage planes through recruitment of the LGN complex to the

apical domain by interaction of Insc with polarity proteins (Fig 2C,

right). However, horizontal cleavages are less common in vertebrate

developing brains. For example, in the mammalian neocortex,

oblique and horizontal cleavage planes appear only in later develop-

mental stages (Fig 2C, middle) [34,35]. These cleavages generate

basal progenitors such as IPs and bRG that are proposed to be

important during evolutionary cortical expansion [36,37]. Disrup-

tion of mInsc at later stages of neurogenesis interferes with the

spindle orientation of these asymmetric divisions [35], suggesting

that release of the tight regulation of spindle orientation is important

for inducing basal progenitors.

Indeed, mutations in genes regulating spindle orientation cause

brain disorders such as lissencephaly and microcephaly in humans

[38]. Interestingly, most known microcephaly genes encode centro-

somal proteins, which often have a role in regulating spindle orien-

tation, such as Aspm, Cdk5rap2, and MCPH1 [38–40]. Centrosome

overduplication in mouse RGCs leads to multipolar mitotic spin-

dles, eventually causing microcephaly due to RGC apoptosis and

subsequent reduction in NPCs [41]. In general, besides regulating

spindle orientation, the function of microcephaly genes is related to

control of centriole duplication, centrosome maturation, and/or

entry into mitosis. However, it is still unclear how disruption of
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Figure 1. Schematic overview of neurogenesis in the embryonic vertebrate CNS.
The principal types of NPCs with the progeny they produce are indicated by different colors. Additional NPC types that are typically found in mammalian neocortex are
indicated in the box; note that only some of the possible daughter cell outcomes are depicted.
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these centrosomal functions leads to reduced brain size (see, e.g.,

[42]).

Asymmetric segregation of cellular components and

cell fate determinants
As discussed above, the apical domain of RGCs contains important

features such as the AJs and the centrosome. One previous model

suggests that the cleavage furrow bypasses the apical domain, lead-

ing to its inheritance by only one daughter cell [34,43]. However,

recent studies have shown equal division of the apical domain even

in asymmetric divisions [28,37]. In this case, both daughter cells

have inherited an apical domain initially, but the differentiating

daughter will withdraw its apical process from the ventricular

surface (Fig 2D, middle).

The basal process is thought to be important for the mainte-

nance of NPC proliferation. In symmetric divisions occurring during

early neurogenesis, the basal process of NECs can either be split

and divided among the daughter cells [44], or inherited by one

daughter cell with the other daughter re-extending it [45]. In

contrast, in asymmetric divisions, the basal process is inherited by

one daughter cell that retains self-renewing properties [37,45]. The

daughter cell without the basal process is not able to re-establish it

and becomes a differentiating cell such as a neuron or IP

[28,37,46]. Taken together, these findings suggest that inheritance

of both the apical and basal domain is required for maintaining

RGC fate [28,37].

Recent studies have shown an intriguing link between centro-

some asymmetries, ciliogenesis, and daughter cell fate (Fig 2E). In

interphase cells, the centrosome contains one mother and one

daughter centriole. The mother centriole is the oldest centriole

within the cell and mediates nucleation of the primary cilium. Inter-

estingly, older centrioles are preferentially inherited by daughter

cells maintaining stem cell identity in the mouse neocortex [47]. A

recent study shows that in mitotic RGCs, the mother centriole is able

to retain ciliary membrane, which is subsequently asymmetrically

inherited by one daughter cell that reforms a new cilium before its

sister cell [48]. This earlier cilium reformation results in earlier cili-

ary signaling in this cell, which is proposed to contribute to its adop-

tion of RGC daughter cell fate. In addition, nascent differentiating

daughter cells show reformation of primary cilia at their basolateral

instead of their apical membranes prior to their delamination [49].

These temporal and spatial asymmetries in ciliogenesis are proposed

to lead to differential exposure of daughter cells to proliferative

signals present in the CSF, such as IGF-1 [15,50], thus leading to

asymmetrical daughter cell behavior.

In Drosophila, asymmetric division of neuroblasts is mediated

through unequal division of polarity proteins and fate determinants.

Similarly, in asymmetrically dividing RGCs of vertebrates, polarity

proteins such as Par3 are asymmetrically segregated into one

daughter cell [34,46,51,52]. At the same time, Notch signaling

components such as the Notch ligand Delta-like 1, the regulator of

Delta internalization, Mindbomb, and the Notch antagonist Numb

are differentially segregated between daughter cells, leading to

differential Notch signaling between daughter cells (Fig 2D, F) [51–

53]. Interestingly, the cell fate related to Par3 inheritance appears to

vary between species. In the mouse, Par3 segregates asymmetrically

into the daughter cell that inherits both apical domain and basal

processes and that remains an RGC (Fig 2D, middle) [51]. In

contrast, in the zebrafish brain, the daughter cell inheriting the

apical domain, including Par3, also inherits the Notch inhibitor

Mindbomb and differentiates (Fig 2D, right) [46,52]. The other

daughter cell quickly re-expresses Par3, re-establishes apical

contact, and remains an RGC. At present, the mechanisms under-

lying these differences between species are unknown.

In addition to polarity proteins, other cytoplasmic proteins also

show unequal inheritance in asymmetric divisions of neural progen-

itors. For example, the double-stranded RNA-binding protein Stau-

fen binds a range of mRNAs that induce cell cycle exit and

differentiation and segregates these into the differentiating daughter

cell during mitosis of RGCs (Fig 2D, middle) [54,55]. One of these

RNAs encodes Trim32 (Brat1 in Drosophila) that is asymmetrically

segregated in both Drosophila neuroblasts and mammalian RGCs.

Trim32 stimulates cell cycle exit through ubiquitination of c-Myc

and activation of differentiation-inducing microRNAs such as Let-7

[56] (see also below).

Regulation of daughter cell fate specification

Transcription factors

During early development, the central nervous system is subdivided

into the prospective different areas by gradients of morphogens such

as Fgfs, Wnts, Shh, and BMPs. This patterning leads to regional

expression of homeodomain and bHLH transcription factors that

instruct NPCs to produce specific cell types during neurogenesis

[57]. One of the master regulators of neurogenesis is the paired box

containing homeodomain transcription factor Pax6 that is expressed

in several CNS regions, such as the forebrain, retina, and hindbrain

[58]. In addition to the regulation of regional patterning, Pax6

promotes RGC proliferation and spindle orientation [59], but also

promotes neurogenesis through the induction of bHLH proneural

genes such as Neurogenins [60]. These partially opposing effects

appear to be mediated through alternative splicing of Pax6 [61] and

its interaction with other transcription factors such as Sox2 and

Hes1 [58,60]. Neuronal differentiation is induced through the

expression of region-specific proneural genes, Pou-homeodomain

transcription factors such as Brn1/2, and SoxC transcription factors

such as Sox4 and Sox11 that initiate specific neuronal programs and

repress other regional identities [57,62]. For example, NPCs in the

dorsal telencephalon express the bHLH proneural factors Neurogenin

Figure 2. Division types of NPCs are determined by spindle orientation and inheritance of cell fate determinants.
(A, B) Symmetric division yields two NPCs, whereas asymmetric NPC division yields one NPC daughter and one differentiating daughter cell. (C) Spindle orientation in
symmetric versus asymmetric divisions is regulated by centrosomal protein and spindle orientation complexes in vertical and oblique divisions of vertebrate NPCs (left and
middle) and horizontal neuroblast divisions in Drosophila. (D) Cell fate determinants may be equally (symmetric division, left) or unequally (middle, mouse; right, zebrafish)
distributed between daughter cells. (E, F) Examples of asymmetries between daughter cells that were introduced by asymmetric inheritance of differently aged centrioles and
ciliary membrane (E), and Par3 and Notch signaling components (F).

◂
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(Ngn) 1/2. These factors instruct the generation of glutamatergic pyra-

midal neurons that make up the six-layered neocortex in mammals

and repress ventral telencephalic genes. In contrast, the ventral telen-

cephalon expresses Gsh1/2, Nkx2.1, and the bHLH proneural factor

Ascl1 that instructs the generation of GABA-ergic basal ganglia

neurons and cortical interneurons, and represses dorsal identity.

The different types of neurons and glial are born sequentially

from a pool of seemingly identical RGCs. Surprisingly, there is a

significant stochasticity in RGC cell fate choices in individual RGC

lineages in the developing retina, although there is a clear temporal

order in neuronal subtype specification [63,64]. In analogy to find-

ings made in Drosophila, the temporal order of neuronal specifica-

tion by neural progenitors is thought to depend on sequential

expression of transcription factors [65]. In the developing neocortex,

neurons are born in an “inside-out” manner, with earlier-born

neurons destined for the deep layers and later-born neurons for the

upper layers. Contradicting observations with regard to the exis-

tence of fate-restricted RGCs in the developing cortex have been

reported [66,67]. One study reports that a subpopulation of Cux2+

RGCs generates only upper-layer neurons during later stages of

neurogenesis [66]. However, recently, it was reported that Fezf2+

RGCs sequentially produce deep and upper neurons, as well as

oligodendrocytes and astrocytes [67]. Also, in this work, Cux2+

RGCs contributed to both deep and upper layers. More studies

will be needed to resolve the question whether fate-restricted

RGCs constitute a relevant proportion of the progenitor pool and

contribute specifically to the diversity of produced neurons.

Epigenetic modifications

In recent years, evidence has emerged that epigenetic modifications

such as DNA methylation and histone modifications are involved

in the control of temporal and spatial gene expression during

neurogenesis, and the switch from neuronal to glial production [68].

Early-stage NPCs show high expression of regulators of epigenetic

modifications. Examples of such regulators are HMG proteins that

regulate the chromatin state and methyltransferases such as Ezh2

that function in histone modifications [69–71]. Therefore, the

chromatin of early-stage neocortical NPCs is in a more open

state (less condensed) than that of late-stage NPCs [70]. Global

chromatin condensation as well as epigenetic modification of certain

genes seems to be involved in the switch of NPC from producing

neuronal to glial progeny during neocortical development [69,70,72].

For example, DNA methylation of glial genes such as Gfap prevents

a premature switch from neuro- to gliogenesis [73]. Activated

Notch signaling induces demethylation of the Gfap promoter

through the induction of Nfia that dissociates DNA methyltransferases

[74]. Conversely, at late stages of neurogenesis, proneural genes

such as Ngn1 are repressed through the action of Polycomb proteins

[69].

The activity of specific transcription factors is also modified by

epigenetic mechanisms. In the developing cortex, Pax6 mediates

transcription of a range of genes that regulate patterning, NPC

proliferation, but also instruction of IPs and late progenitor fates.

Pax6 interacts with BAF155 and BAF170, which are components of

ATP-dependent multi-subunit mSWI/SNF nucleosome remodeling

complexes [75]. During early neurogenesis, BAF170 competes with

the BAF155 subunit and modifies euchromatin structure. This

results in the recruitment of Pax6/REST-corepressor complex to

repress expression of Pax6 target genes, such as Tbr2, Cux2, and

Tle2, that instruct the generation of IPs and late cortical progenitors

[75]. In this way, switching BAF complex subunits at some point

during neurogenesis could release the repression of Pax6 target

genes, and the generation of IPs and late cortical neuronal types

would follow. Another example of epigenetic control of transcrip-

tion factor activity is transcriptional repression of the forkhead

homeodomain transcription factor Foxg1 through the chromatin

remodeling protein Snf2 l at mid-neurogenesis. Repression of

Foxg1 leads to de-repression of the cell cycle exit regulator p21,

thereby promoting cell cycle exit and neuronal differentiation of

NPCs [76].

Post-transcriptional regulation of gene expression

Alternative pre-mRNA processing results in the generation of differ-

ent proteins from one primary transcript. Alternative splicing plays

a role in differentiation and development and has recently also

been implicated in neurogenesis [77]. For example, alternative

splicing of the transcriptional repressor REST by the splicing factor

nSR100 leads to de-repression of neuron-specific genes and neuro-

nal differentiation [78]. Furthermore, the polypyrimidine tract

RNA-binding protein Ptbp2 inhibits splicing of exons that are

typical for the splice variant expressed in adult tissues [79]. For

example, Ptbp2 induces alternative splicing of proteins that are

involved in RGC adhesion [79]. Deletion of Ptbp2 induces prema-

ture neurogenesis. Sequence-specific RNA-binding proteins such as

Rbfox3 were shown to mediate alternative splicing of Numb, an

important regulator of Notch signaling involved in the induction of

neuronal differentiation [80].

An additional post-transcriptional mechanism for regulating gene

expression in RGCs is through miRNAs, highly conserved non-

coding RNAs of 18–24 nucleotides that bind to the 30 UTR of mRNAs

to silence their expression through degradation or suppressed trans-

lation [81]. In the developing brain, groups of miRNAs regulate

either RGC proliferation or neuronal differentiation, suggesting that

miRNAs play a crucial role in determining neuron numbers. For

example, in the developing mouse cortex, miR-92 suppresses the

transition of RGC into IPs by silencing the transcription factor Tbr2

that induces IP fate [82,83]. Besides direct silencing of target genes,

some miRNAs form a regulatory loop together with their targets.

The HMG-box transcription factor Sox2 that is expressed by NPCs

and directs their self-renewal regulates expression of the RNA-bind-

ing protein LIN28 through epigenetic modifications [84]. LIN28

regulates the biogenesis of the let-7 miRNA family by inhibiting

their maturation. In turn, let-7 miRNA suppresses expression of

LIN28 and inhibits both proliferation and neuronal commitment

through silencing of the cell cycle regulators Ccnd1, Cdc25a, and

proneural genes Ngn1 and Ascl1, respectively [84].

Recently, long non-coding RNAs (lncRNAs) have been implicated

in the regulation of developmental processes including neurogenesis

[85]. LncRNA loci encode RNA transcripts of >200 nucleotides that

modulate gene expression through chromatin modifications and

translational control such as alternative splicing. The lncRNA Rmst

regulates neurogenesis in the midbrain through co-transcriptional

interaction with Sox2 to activate proneural target genes such as Ascl

and Ngn1 [86]. In RGCs that are committed to neurogenic divisions,

several lncRNAs such as Miat are expressed that regulate prolifera-

tion versus differentiation [87].
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Signaling pathways
As already mentioned, a variety of signaling pathways triggered at

the plasma membrane, notably the Notch, Wnt, Shh, and Fgf path-

ways, are known to act during the process of neurogenesis. Many of

these signaling pathways have an effect on RGC proliferation and

undergo considerable crosstalk (see also below).

Notch The Notch signaling pathway plays essential roles in the

regulation of both embryonic and adult neurogenesis [88]. As first

elucidated in Drosophila, Delta-Notch signaling regulates neurogene-

sis through the process of lateral inhibition. The Notch ligands Delta

or Jagged activate Notch receptors on directly adjacent cells, leading

to release of NICD that mediates the transcription of Hes genes.

These in turn repress the expression of bHLH proneural genes such

as Ngn and Ascl and thus keep this cell in a proliferative state. In

the developing mouse cortex, the expression of Hes1 in RGCs oscil-

lates with 2- to 3-h periods due to an autoinhibitory feedback loop

[89]. These Hes1 oscillations induce oscillations in Delta and Ngn2

expression. Therefore, it has been proposed that the differential

expression levels of Hes1 could mediate differential responses of

RGCs to incoming signals that regulate proliferation versus differen-

tiation.

Pairs of daughter cells derived from asymmetric RGC divisions

show asymmetries in Delta-Notch signaling components and activity

(Fig 2D, F). For example, in asymmetric RGC divisions in the devel-

oping zebrafish as well as mouse telencephalon, the daughter cell

with higher Notch signaling remains an RGC, while the daughter

cell with low Notch signaling shows high expression of Delta and

proneural genes and initiates delamination from the ventricular

surface and neural differentiation (Fig 2F) [52,89,90]. In the devel-

oping mouse cortex, Notch ligands as well as the E3 ubiquitin ligase

Mindbomb that promotes Notch signaling are expressed by neurons

and IPs [91–94], which signal back to RGC via dynamic and tran-

sient processes (Fig 2F) [93]. One important question is how the

response of cells to Notch signaling changes during neurogenesis, as

Notch signaling is also active in newborn neurons. Some general

repressors of Notch have been identified, but it is unclear whether

these factors are specifically upregulated during neurogenesis

[95,96]. Recently, a transcriptional repressor, Bcl6, was identified

with increased expression during neurogenesis. Bcl6 changes the

composition of the Notch-dependent transcriptional complex at the

Hes5 promoter and leads to histone modifications that permanently

silence Hes5 through recruitment of the deacetylase Sirt1 [97]. This

epigenetic switch results in stable Hes5 inactivity despite active

Notch signaling in differentiating cells, thereby stabilizing neuronal

differentiation.

Wnt Wnt/b-catenin signaling is important in patterning of, and

regulation of proliferation and differentiation in, the developing

brain [98]. After binding of Wnt ligands to their Frizzled/LRP5/6

receptors, cytoplasmic b-catenin is stabilized and translocates to the

nucleus where it mediates gene transcription through LEF/TCF tran-

scription factor activity. Wnt signaling activity plays dual roles

during neurogenesis. During early neurogenesis, Wnt signaling

promotes symmetric RGC divisions and delays IP formation [99].

Later at neurogenesis, however, Wnt activity promotes IP formation

and neuronal differentiation through upregulation of N-myc [100–

102]. A recent study reports that N-myc is expressed in RGCs that

are undergoing neurogenic division in the chick neural tube [103].

N-myc increases non-vertical cleavage planes and represses Notch

signaling to stimulate neuronal differentiation [103]. Although it is

not yet understood how the differential Wnt signaling responses are

mediated, it is likely that the targeted genes change during neuro-

genesis through context- and cell-type-dependent mechanisms such

as epigenetic modifications.

Hedgehog Sonic hedgehog (Shh) signaling is essential for proper

dorsoventral patterning of the vertebrate central nervous system.

Shh signaling is activated through binding of Shh ligand to the

Patched receptor, followed by ciliary accumulation of Smoothened

and processing in the primary cilium of the Gli transcription factors

into their activator forms that mediate downstream gene transcrip-

tion. In the absence of Shh, the Gli proteins are processed into

repressor forms. In addition to its roles in patterning, Shh signaling

also has important roles in the regulation of the RGC cell cycle kinet-

ics through cell cycle regulators, as well as in the production of IPs

[14,16,104]. During neurogenesis, active Shh signaling decreases,

whereas activity of the Gli3 repressor increases, which is necessary

for IP production and neuronal differentiation [16].

A recent study provides mathematical modeling of spinal cord

neurogenesis to predict that decreasing Shh signaling mediates the

switch from symmetric proliferative and asymmetric self-renewing

divisions to symmetric neurogenic divisions by changing RGC cell

cycle kinetics [105]. In the developing neocortex, Shh activity

promotes symmetric proliferative divisions of RGCs through tran-

scription of the Notch transcription factor Hes1 [106], thus showing

that there is a significant crosstalk between different signaling path-

ways in the regulation of RGC proliferation.

Fgf Such interplay between pathways has also been observed for

Fgf and Notch. Fgfs are important for anterior–posterior patterning

of the brain as well as for expansion of RGCs by symmetric division

through downstream activation of Hes1-mediated transcription

[107].

NPC environment
In addition to the above-mentioned extracellular signals, numerous

other factors in the NPC environment influence NPC behavior

(Fig 3).

At the ventricular surface, several ECM molecules such as lami-

nin and syndecan-1 are present that regulate, via integrin receptors,

the apical adhesion and proliferation of RGCs [108,109]. Apical

adhesion of RGCs and apical localization of integrin b1 are also

controlled by ephrin B1 [110]. At the basal side, the interaction of

the NPC basal process with basal lamina ECM is thought to be

important for the self-renewing potential of RGCs and bRGs [17].

Another important signal from the basal side, retinoic acid, is

produced by the meninges. Retinoic acid is essential for the switch

of RGCs from symmetric proliferative to asymmetric neurogenic

divisions at the onset of neurogenesis [111].

In addition to signals derived from the apical or basal side, envi-

ronmental cues present within the developing neural tube wall also

exert important effects on NPCs. For example, the presence of blood

vessels near IPs appears to regulate their proliferation [112,113]. This

resembles NPC regulation by blood vessels in the stem cell niche of

adult neural progenitors. In addition, non-neuronal cells such as
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microglia that are present already during neurogenesis have been

shown to regulate maintenance of the RGC population [114,115].

Post-mitotic neurons produce molecules that provide feedback

information to RGCs. The Cajal–Retzius cells are the first type of

neuron to be born in the neocortex. These cells secrete the glyco-

protein reelin and express the cell adhesion molecules nectins that

mediate neuronal migration. In addition, these cells play a role in

modulating regionalization within the developing cortex by the

secretion of signaling factors [116]. Furthermore, Cajal–Retzius cells

influence RGC proliferation through the action of reelin that ampli-

fies Notch signaling in early RGCs, thus promoting symmetric prolif-

erative divisions and postponing neurogenesis [117]. In contrast,

later-born cortical neurons express signaling molecules such as

neurotrophin 3 and Fgf9 that regulate cell fate choices and the switch

of dividing RGCs to astrogenesis [118]. Feedback signals to RGCs are

also derived from neurons born in other brain regions, such as tran-

sient glutamatergic neurons born in the ventral telencephalon that

migrate tangentially into the dorsal telencephalon [119].

Regional and species differences in neurogenesis

Neural progenitor type diversity

Timing of neurogenesis as well as the total neuronal output differs

between CNS regions and between species [120]. One of the most

expanded brain regions in mammals is the neocortex that enables

many higher cognitive functions [121]. Such regional expansion

could result from: (i) a greater initial pool of RGCs at the onset of

neurogenesis, (ii) increased neuronal production through increased

number of RGC cell cycles or the addition of “intermediate” tran-

siently proliferating progenitor types, and (iii) a prolonged neuro-

genic period. Indeed, all of these parameters seem to be involved in

expansion of the neocortex, especially in primates [120]. The devel-

oping mammalian telencephalon shows a large diversity of neural

progenitor subtypes, as judged by their morphology, their mode of

divisions, and their progeny (Fig 1; [3]). However, there is consider-

able heterogeneity in progenitor behavior, making it difficult to

determine links between specific progenitor subtypes and their

downstream lineages. In species with gyrencephalic brains, the

OSVZ characteristically contains bRG (also oRG), previously called

OSVZ progenitors. bRGs keep radial glial characteristics such as

apically directed and/or basal processes and can divide repeatedly

[17,122–124]. Lissencephalic species such as mice show only low

numbers of bRGs in the developing dorsal telencephalon

[37,125,126]. bRGs appear to be born from divisions with oblique

and horizontal cleavages of apical RGCs in mouse and human

[36,37]. Recent data have shown that bRGs in macaque and human

OSVZ can contain either or both apically directed and basal

processes and that these different morphological types can freely

transition back and forth, showing remarkable dynamics in bRG
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Figure 3. Environmental cues regulating NPC proliferation and differentiation.
For details, see text.
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characteristics and lineages [36,122]. Additional apical RGC types,

named short neural precursors (SNPs) [127], and subapical RGCs

(saRGCs) [128] have also been identified. SNPs divide apically like

apical RGCs, but have only short basal processes and undergo

mainly neurogenic divisions [127]. saRGCs were identified in the

developing ventral telencephalon of lissencephalic rodents and in

the dorsal telencephalon of gyrencephalic species. Therefore,

saRGCs are proposed to add to cortical expansion through increased

production of neurons [128].

These observations show that depending on the CNS region

and species, different types of neural progenitors exist with a

wide variety of morphologies, division modes, and lineages to

generate diverse neuronal outputs. Furthermore, neural progenitor

types and their lineages are by no means strictly separated and

unidirectional.

Differential molecular control of cell fate decisions

Although many general principles and mechanisms underlying

neurogenesis have been identified, it is poorly understood how

(subtle) differences in molecular mechanisms mediate the different

neuronal outputs required for distinct brain regions. For example,

only few molecular mechanisms in induction and maintenance of

the diverse types of neural progenitors in the mammalian neocortex

have been identified. Recently, it was shown that the nuclear Trnp1

protein maintains self-renewing RGCs, possibly through chromatin

remodeling [129]. Interestingly, Trnp1 expression is reduced in

areas of cortical expansion in human fetal brains. Also, deletion of

Trnp1 in mouse leads to increased horizontal cleavages and

increased bRG production [129].

As mentioned above, differences in early patterning events

induce subtle intrinsic molecular and epigenetic differences

between RGCs of different regions. Subsequently, RGCs of different

CNS regions show different responses to signals. For instance,

upon deletion of the small GTPase RhoA, RGCs in cortex,

midbrain, and spinal cord show similar RGC polarity defects and

migrate away from the ventricular surface. However, RGCs in

more expanded regions such as cortex and midbrain respond by

hyperproliferation, whereas RGCs in the spinal cord proliferate less

[6,8,9]. Within tissues, RGC proliferative capacity is modulated

through differential expression of transcription factors, possibly

influenced by dorsoventral and anterioposterior gradients of

morphogens. For example, maintained expression of the transcrip-

tion factor PLZF modulates RGC response to FGF ligands in the

central domain of the developing spinal cord through alterations in

FGF receptor and subsequent downstream signaling component

levels [130]. In this way, centrally localized RGCs maintain prolif-

erative capacity, whereas their dorsal and ventral counterparts

undergo differentiation. Future studies will certainly uncover new

mechanisms that differentially regulate initial RGC pool expansion,

regulation of cell cycle and progenitor diversity, and the length of

the neurogenic period to understand how regional and species

differences in neuronal output are mediated.

Conclusions

The generation of the proper amount of neurons in the various

regions of the developing vertebrate central nervous system

depends on a carefully regulated spatial and temporal balance

between NPC proliferation and differentiation (Fig 4). This

balance is controlled by the cumulative activities of numerous

extracellular and intracellular factors. The timing of the switch of

NPCs from proliferation to differentiation, as well as the sequen-

tial induction of specific NPC and neuron types, differs between

central nervous system regions and vertebrate species. Recently,

there has been a steep increase in the identification of molecules

and mechanisms that govern specific aspects of neurogenesis. A

challenge now is to integrate this knowledge into a coherent

concept of NPC proliferation versus differentiation, to determine,

at the cellular and molecular level, the principles that are
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Figure 4. Extracellular and intracellular factors affecting the balance between NPC proliferation versus differentiation.
For details, see text. TF, transcription factor.
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conserved in vertebrate central nervous system development, and

to identify the modifications that account for the differences

between species.
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