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de Jong TV, Moshkin YM, Guryev V. Gene expression variability: the other
dimension in transcriptome analysis. Physiol Genomics 51: 145-158, 2019. First
published March 15, 2019; doi: 10.1152/physiolgenomics.00128.2018.—Transcrip-
tome sequencing is a powerful technique to study molecular changes that underlie
the differences in physiological conditions and disease progression. A typical
question that is posed in such studies is finding genes with significant changes
between sample groups. In this respect expression variability is regarded as a
nuisance factor that is primarily of technical origin and complicates the data
analysis. However, it is becoming apparent that the biological variation in gene
expression might be an important molecular phenotype that can affect physiological
parameters. In this review we explore the recent literature on technical and
biological variability in gene expression, sources of expression variability,
(epi-)genetic hallmarks, and evolutionary constraints in genes with robust and
variable gene expression. We provide an overview of recent findings on effects of
external cues, such as diet and aging, on expression variability and on other
biological phenomena that can be linked to it. We discuss metrics and tools that
were developed for quantification of expression variability and highlight the
importance of future studies in this direction. To assist the adoption of expression
variability analysis, we also provide a detailed description and computer code,
which can easily be utilized by other researchers. We also provide a reanalysis of
recently published data to highlight the value of the analysis method.
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INTRODUCTION

Affordable sequencing has greatly advanced our understand-
ing of changes in transcription programs and their relation to
diseases. One of the sequencing-enabled technologies, tran-
scriptome profiling by RNA sequencing (RNA-Seq) is becom-
ing increasingly popular for studying molecular phenotypes.
The main advantages of this method, when compared with
hybridization microarray-based approaches, include an in-
creased sensitivity and larger dynamic range, its ability to
detect unannotated transcripts and transcript isoforms, and,
importantly, it enables digital quantification (counting) of RNA
molecules. As a result, RNA-Seq has the potential to quantify
genes with low expression; to reveal subtle changes in gene
expression (115); and to discover new genes, transcript iso-
forms, and allelic variants for proteogenomics analysis (53),
and, as will be discussed later, digital quantification of RNAs
simplifies statistical analysis of gene expression and interpre-
tation of its variability.

*Y. M. Moshkin and V. Guryev are cosenior authors of this work.

Address for reprint requests and other correspondence: V. Guryev, ERIBA,
Univ. of Groningen, UMC Groningen, A. Deusinglaan 1, int zip FAS5O0,
Groningen 9713AD, the Netherlands (e-mail: v.guryev@umcg.nl).

The typical analysis of RNA-Seq data focuses on the
finding of genes that show differential expression between
groups. Such analysis can be done with tools like edgeR
(58) or DEseq2 (52). The results call attention to genes that
significantly change with respect to an average RNA copy
number between measurable factors like age, diet, the
knock-down/-out/-in of genes of interest, and so on. Unfor-
tunately, in such analysis, variability in gene expression is
often ignored as it is treated as a nuisance that only dimin-
ishes statistical power. At the same time, gene expression is
naturally a stochastic process, and in some cases its fluctu-
ation, rather than the mean RNA copy number, could be
significantly influenced by an experimental factor or a
physiological state. Thus, while variations caused by tech-
nical factors can be considered as the true nuisance factor
(80), differential variability in gene expression caused by
biological factors might represent a layer of information on
gene regulation just as important as changes in the mean
expression levels (104). In this review we discuss recent
studies exploring gene expression fluctuations, their ap-
proach to quantification of expression variability, contribu-
tion to understanding of the principles underlying physio-
logical homeostasis, and potential to uncover additional
molecular phenotypes associated with disease.
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SOURCES OF VARIABILITY IN GENE EXPRESSION: POISSON
“INTRINSIC” VS NONPOISSON “EXTRINSIC” GENE NOISE

The intersample differences among transcriptome profiles
originate from biological events as well as from experimental
procedures. The latter represents a source of technical noise
due to the collection and storage of samples, the isolation of
RNA, selection of RNA molecules, and the preparation of
library (92). Library amplification and sequencing might also
introduce differences depending on instruments, read length,
and mode of sequencing. All these factors have the potential to
complicate the analysis of biological variability in gene ex-
pression, especially for large (inter-)national and prospective
projects where data are being produced with different ver-
sions of instruments and/or kits (58). Thus, when studying
variation in gene expression, it is important to estimate
technical variability through comparison of technical repli-
cates prepared from the same starting material (111) and
compare it with the degree of variability seen among bio-
logically different samples (58).

Putting technical variability aside, gene noise originates
from the stochastic nature of chemical reactions driving RNA
synthesis (birth) and degradation (death). In a stationary state
and in the absence of upstream cellular drives, a process of
RNA “birth-death” is expected to be a stochastic Poisson
process (21, 96). This process is described by just two kinetic
parameters, namely the synthesis (\) and degradation () rates.
The expectation (mean) and variance of RNA copy number are
given by the Poisson rate (E[RNA] = Var[RNA] = u) repre-
sented by a constant ratio of synthesis to degradation rates:
p = é = N. Gene expression noise, expressed through a
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reciprocal to the mean of RNA copy number: ¢v?(RNA) =

Var[RNA] . ] ) )
——— 5 = K (96). Here, we will refer to this as Poisson
E[RNA]

noise following (21, 66, 96). However, in reality gene synthesis
is more complex as it is regulated by so-called upstream
cellular drives (21). Because upstream cellular drives are
stochastic themselves, the RNA birth-death becomes a doubly
stochastic (mixed) Poisson process. Consequently, this in-
creases the gene expression noise to the amount that is con-
tributed by all upstream drives, which we will refer to as
non-Poisson noise following (21, 66, 96).

For example, promoter switching between active (ON) and
inactive (OFF) states acts as such a drive (Fig. 1). The prob-
ability of the promoter to be in ON state (pon) is a Beta-
distributed random variable, which depends on RNA degrada-
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switching: p,, ~ Beta(ﬁon, ﬁoff). This, in turn, defines the distri-

bution of otherwise constant Poisson rate (n = ):pon) as
Beta-Poisson (21, 72). A convenient property of mixed Poisson
distributed random variables is that they allow for simple deriva-
tion of their moments (expectation and variance) just from the
moments of the mixing distribution (44). That is [RNA] = \E
[Pon] = (w) and Var[RNA] = (u) + Varlu] = (u) +
(wy*Var[p,,], from where v (RNA) =(u)~! + () =
(wy"' + cv?(p,,) (Fig. 1). Thus, the total gene noise sums from
Poisson noise (<u>""!) and non-Poisson noise caused by
upstream cellular drive, namely promoter switching [cv*(u) =
v*(Pon)]-
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Fig. 1. A model depicting factors influencing the gene expression variability/noise. Key equations depicting the partitioning of variance and squared coefficient
of variations into Poisson (blue, Pois.) and non-Poisson (red, non-Pois.) variability/noise are shown. Such partitioning holds true for any mixed-Poisson
distribution, where the Poisson rate w is a random variable distributed with expectation <u> and variance Var[u]. Key equations for the expectation (E[RNA]),
variance (Var[RNA]) and noise [cv2(RNA)] for two-state promoter model are expressed in terms of burst size (b) and burst frequency (f5). See text for further

details.
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Under limiting conditions of Igoff > Igm and I;Off>>1, ie.,
when a gene is transcribed in short bursts, the pon distribution

converges to Gamma [p,, ~ Gamma(K,,, K,)], and the result-
ing distribution of RNA copy number is Gamma-Poisson (also
known as Negative-Binomial) (72). The Gamma-Poisson rep-
resentation helps understanding of how Poisson and non-
Poisson noise are related to the burst size (a number of
molecules synthesized in a burst) and burst frequency, param-
eters of transcription that are often measured in single cell
experiments (93). That is because Poisson noise is equal to
<p>"' = (bf,)"! and non-Poisson noise is cv’(n) = ¢v?

(Pow) = f, ', where b = Nk is a burst size and f;, = ky, is a
burst frequency (21, 72). Thus, non-Poisson noise is inversely
related to burst frequency, which implies that changes in burst
frequency are indicative of changes in non-Poisson noise. For
the detailed derivations of various stochastic gene expression
models under a mixed Poisson framework and further theoret-
ical insights we refer to a compelling work by Dattani and
Barahona (21).

In essence, the partitioning of the total gene noise into
Poisson and non-Poisson immediately corresponds to a concept
of “intrinsic” and “extrinsic” gene noise (26, 94). Two-color
reporter gene assays allow for the separation of within-cell
variations from cell-to-cell variation in gene expression. In this
assay two identical copies of a promoter drive the expression of
reporters: yellow fluorescent protein (YFP) and green fluores-
cent protein (GFP). The single-cell fluorescence readout will
show different expression levels of YFP and GFP due to the
intrinsically stochastic nature of gene expression. At the same
time extrinsic noise will be related to covariance between
expression levels of these two reporters. Hence, the within-cell
gene expression fluctuations have been coined as intrinsic gene
noise, while cell-to-cell variations were referred to as extrinsic
gene noise. A total gene noise sums, then, from intrinsic and
extrinsic resulting in identical partitioning of noise as Poisson
and non-Poisson.

However, defining gene noise through a combination of
intrinsic and extrinsic noise has been subjected to criticism.
First, it is not clear relative to what within biological system
gene noise is intrinsic or extrinsic (68). Second, they are
conditioned on each other (88). Indeed, intrinsic gene noise, or
Poisson noise for that matter, is reciprocal to the mean gene
expression. For the two-state promoter model, i.e., in the
presence of upstream cellular drive caused by promoter fluc-
tuation, the mean gene expression depends on the probability
of the promoter to be in the ON state. Thus, intrinsic gene noise
is coupled to upstream cellular drives. Likewise, extrinsic gene
noise depends on the RNA lifetime normalized rates of pro-
moter switching between the ON and OFF states. Thus, extrin-
sic gene noise is conditioned on the characteristic gene state
variables (21, 72).

Having this in mind and considering that RNA birth-death is
a doubly stochastic Poisson process, it makes more sense to
stay with Poisson and non-Poisson partitioning of gene expres-
sion noise (21). Accordingly, parameters affecting the gene
expression variability and thus the gene expression noise could
be classified into gene-state variables (kinetic parameters of
RNA synthesis/degradation), regulatory variables (concentra-
tion of transcription factors, chromatin accessibility, epigenetic
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state, etc.), and system-state variables (aging, metabolism, or
other environmental factors acting on cells) (Fig. 1).

GENE-STATE DETERMINANTS OF EXPRESSION VARIABILITY

If the right conditions are met, RNA polymerase Pol II
(RNAP II) binds to a promoter region and initiates transcrip-
tion of the gene (81). The transcription happens in short bursts
followed by a refractory period in which no transcription takes
place (116). A simplified derivation of the two-state promoter
model shows that non-Poisson noise depends inversely on the
burst frequency, while Poisson noise is reciprocal of a product
of burst size and burst frequency (21, 72). Each gene has its
own bursting dynamics, which, in turn, determines its noise
(93). Different factors can either influence the burst frequency,
a frequency of promoter activation within the mean lifetime of
RNA, or the burst size, the amount of RNA produced per unit
of time within a burst (82). Thus, any factor interfering with
promoter fluctuation, RNA synthesis, or degradation kinetics is
expected to modulate the within-cell and cell-to-cell variability
in RNA copy number and thus gene noise.

In eukaryotes, the RNA birth-death rates are orchestrated by
a complex regulatory system. With respect to the regulation of
the synthesis rate, it is worth mentioning the RNA splicing
process. The different proteins involved in splicing and acces-
sibility of alternative donor/acceptor sites can modulate RNAP
IT elongation rate and, thus, the RNA synthesis rate. For
instance, RNAP II elongation rates tend to increase throughout
introns as compared with exons (42, 46). However, splice sites
themselves, in mammals, but not in yeast, act as RNAP II
pausing sites (19, 41). Such pausing can be bypassed by the
inhibition of splicing mechanisms (65). To that, cotranscrip-
tional checkpoints associated with splicing can further modu-
late the synthesis rates (3, 16). Thus RNA splicing, being
intimately linked with RNA elongation, is expected to contrib-
ute to Poisson noise by modulating RNA “birth” rate.

The amount of RNA observed in a cell is the consequence of
equilibrium between synthesis and degradation. This means
not only fluctuations in the synthesis rate but also variations in
the degradation rate are likely to influence both the average
expression as well as the variation in expression (57, 97). The
half-life of RNA molecules depends on the length of the
3’-poly(A)-tail, which is removed through deadenylation be-
fore degradation (67, 109). As a direct consequence of the
two-state promoter model, the total gene expression noise
(Poisson and non-Poisson) is directly proportional to the RNA
degradation rate. This implies an increased noise level for
RNA species with shorter half-life and a decreased noise for
the stable RNA molecules. For example, the presence of
certain microRNAs have been shown to increase the rate of
RNA deadenylation (107), and one can predict that such a
mechanism will turn up the gene noise. Strikingly, although
RNA synthesis and degradation, at first glance, are two inde-
pendent processes, the RNA degradation rate was found to be
regulated by transcription (13, 33). In terms of gene noise, the
existence of a coupling between synthesis and degradation
rates has a profound consequence as it leads to non-Poisson
RNA birth-death process even in the absence of upstream
cellular drives (96).

Finally, it is reasonable to assume that the kinetics of
transcriptional bursts and as a result gene noise are likely to be
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determined by the promoter sequence and the surrounding
architecture. Indeed, the presence of a TATA-box within the
promoter is known to increase not only the average expression
of genes, but also its noise (11, 76, 77). TATA-box binding
protein (TBP) associates with distinct coactivator complexes,
each of which competes for the binding to the promoter, as it
also mediates reinitiation of transcription by RNAP II (77, 81).
Consequently, this promotes fluctuations in promoter activity,
i.e., increases cell-to-cell or temporal deviations in the proba-
bility of the promoter to be in ON state. This, in turn, increases
the gene expression noise, as non-Poisson noise is directly
related to the fluctuations in these upstream cellular drives
(21). Likewise, the complexity of the promoter can further
increase the competition between distinct transcription factors
and the expression noise. A simple promoter architecture, in
which the promoter region is free from secondary regulation,
tends to generate little noise (36, 87). DNA variants in the
promoter region can modulate the binding affinity of transcrip-
tion factors, consequently changing both the average gene
expression and expression noise (36). Besides competition for
transcription factor binding within a promoter, competition
between distinct promoters might also increase the gene noise
by lowering the promoter burst frequencies (77). Next to that,
the presence of a so-called “speed bumps” downstream of the
transcription start site can cause RNAP II stalling (1), which
might be detrimental for determination of bursting kinetics and
noise. Although further mechanistic insights into the impact of
gene-state variables on gene noise remain to be made, the logic
of a doubly stochastic Poisson birth-death process and the
two-state promoter model provide valuable tools for the dis-
section of gene noise determinants through the modeling of
RNA birth-death rates.

EPIGENETIC DETERMINANTS OF EXPRESSION VARIABILITY

In eukaryotes, promoter accessibility and RNA synthesis are
modulated by the epigenetic state of a gene, which sums from
the DNA methylation status, nucleosome assembly, and post-
translational histone modifications. The epigenetic landscape is
not static, as environmental cues such as diet, smoking, phys-
ical exercise, and aging can alter the epigenetic composition of
the chromatin throughout an organism’s lifetime (8, 29, 34, 95,
102). Methylation patterns have been shown to vary with
circadian rhythm (5). Methylation of CpG islands in promoter
regions can alter transcription dynamics, resulting in the re-
pression of transcription (10). In general, the presence of CpG
islands in promoters lowers gene noise (27, 60). This might
seem somewhat paradoxical, as increased CpG methylation is
associated with increased nucleosome occupancy (20), and, as
result, it is expected to elevate gene noise because of the lower
promoter accessibility for transcription factor binding. How-
ever, the occurrence of CpG islands in promoters of robustly
expressed genes, i.e., in genes with low transcriptional noise,
does not imply an increased methylation of their promoters. At
the same time, a long-standing hypothesis suggests that DNA
methylation might suppress cryptic transcription initiation
from within the body of a gene, thereby reducing transcrip-
tional noise (9, 39). Thus, it will be important to address these
factors in future research on how DNA methylation partitions
between promoter and gene body in genes with robust and
noisy expression.

GENE EXPRESSION VARIABILITY

Assembly of eukaryotic DNA into nucleosomes adds yet
another layer of complexity to gene regulation and is likely to
modulate gene expression noise (17). Indeed, TATA-contain-
ing promoters favoring nucleosome assembly tend to further
increase the noise due to a competition between TBP and
nucleosomes (18, 83). Furthermore, histones that constitute
nucleosomes are subjected to a wide range of posttranslational
modifications, collectively known as a histone code (4). Tran-
scription coactivator or co-repressor complexes recognize par-
ticular combinations of histone modifications tuning both gene
expression level and expression variability (27, 108, 112).
Thus, it may not be surprising that the presence of conflicting
histone marks, i.e., co-occurrence of histone modifications
associated with gene activation and repression, leads to an
increased expression variability (27). First, bivalent histone
modifications are expected to create a competitive state at the
promoter and, as a result, increase noise in the promoter
activation. Second, bivalent histone marks might interfere with
transcription initiation and elongation causing RNAP II to
pause (51). In general, increased acetylation of histones and an
overall “loose” chromatin structure at the promoter are asso-
ciated with low expression noise, whereas a “closed” chroma-
tin configuration and deficiency in active histone marks drive a
higher noise (14, 22, 63, 90, 98). In conclusion, the stochastic
nature of RNA synthesis is intimately modulated by the sto-
chastic nature of chromatin and DNA methylation states acting
as upstream cellular drives (14, 28).

SYSTEM-STATE DETERMINANTS OF EXPRESSION
VARIABILITY

In general, biological processes are affected by two time-
dependent factors: the circadian clock and aging. Interestingly,
gene expression variability is also linked to these factors. For
example, recently it has been shown that the circadian clock
modulates burst frequency rather than burst size. Conse-
quently, gene expression noise oscillates daily along with the
average gene expression (63). Aging deteriorates many phys-
iological parameters whose variability increases with time
(reviewed in 15), and a clear epigenetic drift between monozy-
gotic twins arises during aging (29). Thus, aging is expected to
have a profound effect on gene expression variability (55). In
accordance with this, the expression of housekeeping genes
was shown to be more robust in cardiomyocytes from young
mice as compared with old mice (6). To that, recent studies in
mouse models provide evidence that interindividual variability
in gene expression tends to increase with age and can be
reduced upon interventions aimed to slow aging (61, 105).
Furthermore, a lower variation in gene expression was ob-
served to correlate with the presence of H3K36me3 (27), a
histone mark that was previously associated with increased
longevity (86), although it is not known whether this epigenetic
modification is a cause or consequence of the increased vari-
ation in gene expression. A recent study of gene expression in
human skin, fat, and blood samples from twin samples showed
a general decrease of expression variability with the age of
individuals studied (101), This surprising and, perhaps, con-
tradictory observation on linking aging and expression vari-
ability warrants further investigations of expression variability
in other populations, tissue types, as well as computational
approaches for its quantification.
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VARIABILITY IN GENE EXPRESSION MIGHT EXPLAIN MANY
BIOLOGICAL PHENOMENA

Variability determines plasticity, i.e., a degree to which a
gene can change its expression in response to environmental
fluctuations as a consequence of the fluctuation-response
relationship (49, 84). Plasticity of expression can serve a
cell to adapt to a new environment (106). At the population
level, a more varied expression of certain genes can produce
individuals that are better prepared for changing conditions
at the cost of reduced metabolic efficiency (12). This was
shown on a microscopic scale in yeast, in which a high
variability in expression of yeast plasma-membrane trans-
porters enhanced their adaptive capabilities to a changing
environment (114). Selection for the yeast TDH3 enzyme
involved in the glucose metabolism was shown to have a
greater impact on expression noise rather than on the aver-
age level of expression, showing an example of selection for
higher variability as an adaptation mechanism (59). Overall,
genes involved in environmental responses show more vari-
ation in expression, which can be beneficial for nonhouse-
keeping functions such as coping with stress or reacting to
environmental queues (11, 69). Genome-wide analysis of
transcriptional and epigenetic variability across human im-
mune cell types showed that neutrophils, one of the first-
responder cells upon an infection, contained the largest
variation in both methylation and expression and suggesting
that variability might be an important factor in immune
response (24). Also interpopulation variability has shown
that genes can have similar levels of expression variability
across individuals and populations, with the largest differ-
ences observed among genes associated with immune re-
sponse and disease susceptibility such as chemokine recep-
tor CRCX4, which is important for HIV-1 infection, where
variation in expression may underlie differences in disease
susceptibility (50). In contrast, genes involved in growth
and development (85), as well as genes that provide a
universal function, such as protein synthesis or degradation
generally (e.g., translation initiation and ribosomal pro-
teins), show relatively robust expression (62). Similarly,
genes central in gene networks, like key pluripotency reg-
ulator Pou5f1 (56) or encoding products that are critical to
the survival of cells (also known as essential genes, since
their deletion is lethal) and genes that code for multiprotein
complexes have evolved to minimize their expression noise
(30, 48, 54). Finally, a recent study in humans showed that
long noncoding RNAs, such as antisense transcripts from
the genomic loci corresponding to known protein-coding
genes, display a higher interindividual expression variability
as compared with protein-coding genes (45), substantiating
their role in adaptation.

Another biological phenomenon where the expression vari-
ability might play an important role is incomplete penetrance
(71, 73). The latter study shows that in Caenorhabditis elegans
mutants with more stochastic expression of the end-1 gene, a
threshold for activating expression of elt-2, the master regula-
tor of intestinal differentiation, may or may not be reached, and
hence only some of mutant embryos will develop intestine.
Different levels of expression in individuals with a similar or
even isogenic genetic background can explain why some indi-
viduals develop severe disease while others have a mild or
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even wild-type phenotype. Even individuals who are geneti-
cally identical can show phenotypic differences and even
personality traits, as recently reviewed in (25). Studying tran-
scriptomes from the viewpoint of expression variability can
provide new explanations for mechanisms of disease develop-
ment.

PREREQUISITES FOR ANALYSIS OF DIFFERENTIAL
VARIABILITY IN GENE EXPRESSION

Despite the high promises of differential variability analysis,
several important factors should be taken into consideration
when planning and performing this type of analysis.

Sufficient Number of Samples

While some of the studies investigating expression variabil-
ity used as few as three samples per group (105), technical
biases in library preparation and sequencing can have profound
effects on the differential variability estimates. For a reproduc-
ible analysis of differential variability, a larger sample size is
required in contrast to studies where a differential mean ex-
pression is tested (110). This is further exemplified below by
means of power analysis in the section showcasing the differ-
ential variability analysis for mice.

Avoiding Batch Effects

Since technical variation can mask the effects coming from
biological differences, it is important to perform all technical
procedures in a single batch or, whenever that is not possible,
randomly distribute samples from different groups among
experiment batches.

Accounting for Variability in Transcript Structure

While most current studies quantify variability by using the
number of molecules or number of sequencing reads corre-
sponding to the gene, the structure of the transcript is rarely
taken into account. Yet variability in pre-mRNA maturation is
also observed (103). At the splicing level, statistical methods
were developed to identify genes with condition-specific splic-
ing ratios (31), while variation in splicing can be defined and
quantified using a recently suggested local splicing variation
units (100). Future methods for differential variability analysis,
therefore, should consider not only quantitative, but also struc-
tural, variability of gene products.

The first two points are rather general experimental design
considerations, while the latter is more specific for RNA-Seq-
based profiling of gene expression.

STATISTICAL INFERENCE OF GENE EXPRESSION
VARIABILITY

Several metrics have been proposed to measure the variabil-
ity of gene expression, such as variance (02), the (squared)
coefficient of variation (cv, also known as signal-to-noise
ratio), Fano factor (also known as noise strength), and their
robust counterparts median absolute deviation from the median
(MAD), (quartile) coefficient of dispersion (COD or QCOD),
etc. (74, 83, 99). (Table 1).

Applicability and interpretation of these metrics depend on how
gene expression data were obtained and processed. For example,
variance stabilizing transformations [VST, fix)] of microarray
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Table 1. Commonly used measures of variability

Coefficient of variation (signal to
noise ratio)

Fano factor (noise strength)

Median absolute deviation from
the median

Coefficient of dispersion

cv = o/u
F=d/u
MAD = median(Xil — X)
COD = MAD/X)
QCOD = (Q3 — OD/I(Q3 + Q1)

Quartile coefficient of dispersion

)?, median; QO and Q3 are the 1st and 3rd quartiles, respectively.

hybridization intensities or normalized RNA counts [such as CPM
(counts per million) or FPKM (fragments per kilobase of tran-
script per million)] transform mean and variance as E[f(X)] ~
fipx) and Var{f(X)] = (f (wy))’o%, respectively, following the
Ist-order Taylor expansion, where ux and o-i are original mean
and variance, respectively. Among commonly used VSTs are the
logarithm [log»(X)] and generalized logarithm [glog,(X) = log,
X+ X?+1)] functions (38). This implies that the variance of
log> or glog, transformed variables corresponds to the squared

coefficient of variation of the original variable (cv)zf) as Varllog,
2

X)] = 10g(2)_20—)2( = log(2) 2cvi and Var{glog,(X)] =~ log

5 X

@)%

pxt1
to estimate either cv or Fano factor for VST transformed variables
as their variance is already proportional to cvf(. Similar logic
applies to robust measures of variability as MAD[log,(X)] =

median(llog,(X/X)!) and MAD[glog>(X)] =~ median(llog-(Xy/

X)I) (for X; >=> 1), and additional normalization of MAD to the
median of VST transformed variable is unnecessary.

In contrast, when dealing with untransformed variables
emitted by Poisson or mixed-Poisson processes (such as RNA-
Seq counts), normalization to the mean is required because of
the presence of the mean-variance relationships. Var{X] =
(ri =y for Poisson and VarlX] = 0,2( = uy + axu)z( for
mixed-Poisson distributed RNA counts, where ax > 0 is the
overdispersion parameter (44). Then, the Fano factor turns out
to be handy for the estimation of deviation from the Poisson
process, as F = o)z(/px > 1 indicates overdispersion, while
cv)Z( = Wy ' + ay partitions noise into two asymptotically ort-
hogonal parameters of mixed-Poisson distributions, which we
refer to as Poisson and non-Poisson noise. In the section
showcasing the differential variability analysis for mice we
demonstrate statistical inference of both ux and ax parameters
for genes” RNA counts.

So far, statistical inference of expression variability is
limited to only a few tools. For instance, tools, such as
AEGS and pathVar aim to discover biological pathways, for
which the expression variability changes. AEGS is a web-
server that uses case-control data and allows one to identify
which of predefined gene sets (e.g., genes belonging to the
same gene ontology category) are more variably expressed
and ranks variability of individual genes within each set
(32). The tool is also available as standalone program and
can, in principle, be easily integrated into RNA-Seq analysis
pipelines. PathVar enables case-control pathway-based in-
terpretation of gene expression variability but can also

~ 10g(2)_2cv§( (for Mf( >> 1). Thus, it makes no sense
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compare a single group of samples against a background
distribution (99). This tool is available from the Bioconduc-
tor collection of packages, provides a broad choice of
variability measures, and can also become part of routine
transcriptome analysis.

Another tool, MDseq, employs a generalized linear model
(GLM) to estimate statistically significant changes in both
expression mean and variability in response to experimental
factors (74). Although MDseq considerably expands the
standard GLM approach employed in many tools for differ-
ential gene expression analysis, its current implementation
seems to be limited to a fixed-effect negative binomial (NB)
model (74). To that, MDseq parametrization of the NB
implies a linear mean-variance relationship for RNA counts:
Var(X) = e, while many RNA-Seq studies suggest a
quadratic relationship (58). In fact, a quadratic mean-vari-
ance relationship originates from the mixed-Poisson nature
of a stochastic process driving RNA synthesis and degrada-
tion (21, 40, 66, 72).

In brief, for a mixed-Poisson processes, the Poisson rate (w),
represented by a ratio of RNA synthesis to degradation rates, is
assumed to be a random variable with the expectation E(u) =
w and the variance defined by an underlying mixing distribu-
tion gu(m). The mixed Poisson distribution of RNA counts

© ux

takes the following general form: P(X = x) = f 'M g
0o X!

(n)dp, where mixing distribution g.(u) can take on any
parametric form depending on upstream cellular drives (21).
For example, promoter switching between active and inac-
tive states (bursts) leads under limiting conditions to a
gamma distribution of the Poisson rate (). As a result, the
cell-to-cell distribution of the RNA copy number follows a
gamma-Poisson distribution (also known as a negative bi-
nomial, NB) (21, 72). Likewise, the NB distribution empir-
ically fits well to RNA-Seq counts from both tissues and cell
populations (58).

For any mixed-Poisson process, i.e., independent of a spe-
cific form of the g,(u), a total variance and noise (a squared
coefficient of variation of RNA counts) sums from the Poisson
(1st summand) and non-Poisson (2nd summand) parts as:
Var[X] = u + ap?, ov*(X) = u~ ' + o, respectively (44, 79).
Non-Poisson variation («) is often referred to as the overdis-
persion parameter or the biological coefficient of variation
(a = bcev?) (58). The Poisson and non-Poisson variation are
also assigned as intrinsic and extrinsic, respectively (68). Thus,
the goal of differential gene expression analysis is to estimate
the average RNA copy number (w), while that of differential
gene noise analysis is to estimate overdispersion («) from a
distribution of RNA counts.

SHOWCASE FOR DIFFERENTIAL GENE EXPRESSION
VARIABILITY ANALYSIS USING GAMLSS

Here we propose to utilize GAMLSS to assess the effects of
biological factors on a gene’s Poisson (™ !) and non-Poisson
(a) variation. GAMLSS stands for generalized additive model
for location, scale, and shape and offers immense flexibility for
semiparametric mixed effect modeling of up to four distribu-
tion parameters (78, 91).

The suggested analysis strategy has several advantages.
First, GAMLSS comes with an extensive list of mixed-Poisson
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distributions along with their zero inflated/adjusted variants (79).
Second, GAMLSS allows for the fitting of mixed-effect models to
RNA counts. And third, smoothing terms (splines) can also be
used to model nonlinear relations of mixed-Poisson distribution
parameters with continuous experimental variables such as age.
These factors combined give it a much better control in the
modeling of differential gene expression and variability.

To demonstrate GAMLSS at work, we provide a brief reanal-
ysis of age-dependent changes in the overdispersion (non-Poisson
variation) for genes expressed in liver samples taken from young
and old C57BL/6J mice (61). All computer programs used here
and description of the analysis are available as GitHub repository
(https://github.com/Vityay/ExpVarQuant).

We modeled genes’ RNA counts using the NB(w,«) distri-
bution parametrized with respect to the mean (u) and non-
Poisson variation (@) in such a way that the quadratic mean-
variance relationship holds. The probability mass function for
independent ang identically distributed RNA counts (X) for a
given gene: X ~ NB(p,a) is defined as:

1
F<—+x) 1
® 1 of ap \*
1 (l-i-oqx) (l-ﬁ-otpd)y

F(—)F(x+ 1)

P(X=x)=

with expectation (mean) and variance of RNA counts: E[X] =
w, Var[X] = w + ap? and ov’(X) = p~ ! + a.

Then, we specified a GAMLSS model to account for the age
(young, 5 mo; old, 20 mo old mice) effect on both the mean
RNA counts and the overdispersion:

log(X;) ~ age;, + log(N;),
log(at) ~ age;Ba,

where i = 1, ..,n is ith observation of gene’s mRNA counts
(X));j = 1, ..,p is jth factor level (young, 5 wk; old, 20 wk); and
log(N;) is offset vector represented by library sizes. The first
equation of GAMLSS specifies a model of a factor effect,
namely age;, on library size (N;) normalized mean mRNA
counts (p; = ePr;, cpm; = 10°w,). Essentially, this part of the
model corresponds to a GLM model of differential gene
expression (58), however, GAMLSS allows for more flexibility
as random effects and smoothing terms can also be included
(91). The second equation of GAMLSS models a factor effect
on non-Poisson noise («), where B, is a maximum-likelihood
estimation of overdispersion parameter (a; = ePoy).
Significance values of age-mediated changes in w and «
parameters of the NB(u,a) were assessed for each gene with
likelihood ratio tests (LR). For a given gene, the LR test
statistic for changes in mean RNA counts between old and
young mice was calculated as following:
likelihood for reduced model
D, = —2log——
likelihood for GAMLSS model
L(“‘O? a lei)

Og/:,(l.kj, OLJIXZ) ’

=—2I

where the reduced model omits factor effect (age) from the
model of u: log(X;) ~ B, + log(V;), while the age effect on

151

non-Poisson noise was still accounted for. It can be readily
noted that the estimation of differential gene expression by
GAMLSS differs from that by classical GLM as the latter
estimates only the shared overdispersion (58). In brief, the
GLM model is specified as:

log(Xi) ~ agejBHj + log(N[),
log() ~ Ba,
in GAMLSS notation, and the LR test statistic is calculated as:
likelihood for null model
2log——
likelihood for GLM model
. Lo, gl X))
Lw;, aolX)’

D

“GLm -
= —2lo

where null model omits factor effect on both w and «. Finally,
LR test statistic for changes in non-Poisson noise was calcu-
lated by comparing GLM model (as reduced model for o) with
full GAMLSS model:

likelihood for GLM model
D, = —2log——
likelihood for GAMLSS model
L), ol X;) '

= —2log

Dy, D, . and D, are asymptotically y>-distributed with
degrees of freedom equal to a difference between the number
of compared models’ parameters. Thus, from this example it is
clear that GAMLSS is an extension of a GLM model allowing
for the estimation of factor effects on both parameters of the
distribution of RNA counts, namely mean and overdispersion
(non-Poisson noise).

We excluded genes with zero counts in any of the samples
from the analysis as this might bias the estimation of
non-Poisson variation. In fact, an excess of zeros in RNA-
Seq data imposes a certain problem for statistical inference
of the distribution parameters for RNA counts. Indeed, in
many cases it is impossible to discriminate whether observ-
ing a zero is the result of a gene being silenced or whether
it is observed due to an insufficient sequencing depth caus-
ing dropouts of genes with low expression. In principle, the
former case corresponds to a zero-adjusted model, while the
latter to a zero-inflated model, and both could be fitted by
GAMLSS. However, neither of these assumptions alone
resolves the uncertainty that zero values introduce to tran-
scriptome analysis.

Having estimated the parameters u and « for liver genes
expressed in young and old mice, we noted that their
absolute values were practically uncorrelated [p(u,a) — 0].
This could be attributed directly to the given parametriza-
tion of the NB(u,a), which implies an asymptotic indepen-

dence of the estimated parameters. It follows from the Fisher
2

information matrix as its element /,, = — log(P(X]

Eapaa
p.a)) = 0. To that, changes in the mean gene expression and the
non-Poisson variation occurring with age were also almost uncor-
related ([p(Aw,Aa) — 0]). Testing under the assumption that the
cellular RNA concentration (total number of RNA molecules per
cell) is the same for the samples taken from young and old mice,
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we scored about a comparable number of genes for which the
mean RNA counts either increased or decreased significantly with
age (Figs. 2A, 3A). Estimation of the mean also yielded the
estimation of the Poisson variation as they are reciprocal to each
other (Poisson variation = ™ '). In contrast to the Poisson vari-
ation, non-Poisson variation increased with age (Fig. 2B). Impor-
tantly, applying the GAMLSS model enabled for the identification
of genes for which the non-Poisson variation, but not the mean,
changed significantly with age (Figs. 2B, 3B).

However, it must be noted that the relative standard errors
of overdispersion estimates tend to be larger than that of

GENE EXPRESSION VARIABILITY

mean estimates. As a result, this lowers the statistical power
of the LR test for factor effects on non-Poisson variation.
This is evident from the power analysis of LR tests for fold
changes in mean and overdispersion (Fig. 2, C and D).
Although a derivation of the analytical form for the power
of LR tests for complex models is deemed impossible, this
can be circumvented by a simulation method. To this end, a
thousand pairs of samples of NB distributed random vari-
ables were generated with the given parameters wo (counts)
and ao (non-Poisson noise) for reference samples and fold
changes (8) in one of the NB parameters for test samples.

5
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Fig. 3. Examples of differentially expressed genes (A) and genes showing increase in non-Poisson variability with age (B). Top: boxplots of selected liver
genes’ mRNA copy numbers [expressed as loga(cpm)] for young (green, n = 6) and old (red, n = 6) C57BL/6J mice. Whiskers extend to minimum and
maximum values. Middle: boxplots of log>(cpm) residual values corrected for genes’ grand mean expression for young and old mice (~gene). Bottom:
boxplots of log>(cpm) residuals corrected for genes’ group-wise mean expression in young and old mice (~gene:age). The middle panel serves to illustrate
differential gene expression, while the bottom panel shows whether the gene expression variability is affected by age. Genes were selected based on
significance of the age-mediated changes in mean mRNA counts (A, FDR,m = 0.05) or changes in non-Poisson variability (B, FDRuon-pois. variability =
0.05). For B, note an increase in log>(cpm) variability for selected genes in population of 20 wk old mice due to an increase in non-Poisson variability
with age as compared with 5 wk mice. Left panel in B shows genes associated with complement and coagulation cascades according to KEGG annotation;
the right panel shows a selection of 30 genes with the highest statistically significant gain in non-Poisson variability.

Then, LR tests were applied, comparing simulated reference
samples NB(wo, ap) with test samples NB(duo, o) and
NB(o, datp). The power of LR tests for wo # 8o (Fig. 2C)
and oy # b6y (Fig. 2D) was then estimated as a proportion
of true positives at a significance level of < 0.05. Obviously
for all tested configurations of NB (wo: {10, 100, 1000} and
ao: {0.1, 0.25, 0.5}) the power of LR tests for mean and
overdispersion increased with an increasing sample size. To
that, the power of LR tests for fold changes in mean counts
(Fig. 20) is higher than that of non-Poisson noise (Fig. 2D).
Unexpectedly though, the power of LR tests tends to in-
crease, especially for the tests comparing overdispersion,
with increasing o irrespectively of the presence or absence
of an offset parameter, which simulates library size. This
suggests that an increase of sample size and sequencing
depth (library size) will eventually increase the statistical
power of tests aimed at comparing changes in mean expres-
sion and non-Poisson noise.

EXPRESSION VARIABILITY ANALYSIS PROVIDES
ADDITIONAL INSIGHTS INTO DATASET

To identify biological pathways associated with the age-
mediated increase in non-Poisson variations, we fitted a
ridge regression model to the log, fold change in overdis-
persion using KEGG annotations of genes as a model matrix
(Fig. 4A) (35, 43). Such an approach circumvents the prob-
lem of pathway overrepresentation analysis associated with
the necessity to select a threshold for statistical significance.
It is also well suited for the analysis of non-Poisson varia-
tion when a common trend for genes is to increase in
variability with age. As a result, the KEGG-pathway ridge
regression model revealed several pathways, such as the
complement and coagulation cascades, amino acid (Val,
Leu, Ile) degradation, chemokine signaling, and others for

which non-Poisson variation increased in aged mice (Figs.
3B, 4B).
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Fig. 4. Pathway analysis of age-mediated changes in non-Poisson variability. A: ridge regression model predicting age-mediated changes in non-Poisson
variability based on the genes’ KEGG pathway annotations. B: top 20 KEGG pathways associated with age-mediated increase in non-Poisson variability.

Pathways were selected based on the ranking of model coefficients.

FLUCTUATION-RESPONSE RELATIONSHIP FOR RNA COUNTS

Gene expression noise is thought to drive gene expression
plasticity due to a fluctuation-response relationship (49, 84).
This implies that an absolute change in the expectation (w)
of some measurable quantity (X) in response to an influence
is proportional to its initial variance: lu; — wol ~ Var(X).
However, this relationship holds true only for Gaussian-like
distributed quantities under the assumption of a fixed vari-
ance: Var(X;) ~ Var(Xyp). Nonetheless, if log transformed
RNA counts approximate a Gaussian-like distribution, then
the fluctuation-response relationship takes on the following
form: loglw/ugl ~ a = bcv?, as a result of the Taylor
expansions for the moments for genes expressed at large
copy number (u => 1). We noted a modest, but significant,
positive correlation between absolute log, fold changes in
the mean gene expression for old and young mice with
non-Poisson variation for young mice (Fig. 5A). A lack of a
stronger correlation could be due to the violation of the
fluctuation-response assumption of a fixed variance or over-
dispersion for log-transformed variables. In general, this
substantiates the fluctuation-response relationship for the
RNA copy number.

ESTIMATES OF GENE VARIATION FROM TISSUES RETAIN
INFORMATION ON GENE-STATE DETERMINANTS OF NON-
POISSON NOISE

Finally, we wondered if the estimate of non-Poisson
variation from RNA-Seq data of cell populations contains
information on gene-state determinants. To this end, we
compared the genes’ non-Poisson variation estimates with
their promoter DNA-sequence composition. First, we noted
that on average, the non-Poisson variation was higher for
genes that were regulated by TATA-containing promoters
(Fig. 5B). Second, in accordance with the fluctuation-re-

sponse relationship (Fig. 5A), aging induced more pro-
nounced changes in the mean expression of genes with
TATA-containing promoters (Fig. 5, B and C). Overall, this
result is in agreement with the TATA-mediated promoter
fluctuation caused by a competition between distinct TBP-
coactivator complexes (77, 82, 87), and it substantiates the
notion that gene-state signals are retained in cell population
estimates of non-Poisson variation.

To conclude this brief showcase of GAMLSS, we advo-
cate for the use of this framework to dissect the determi-
nants of both mean RNA counts and non-Poisson variation
as two independent parameters of gene expression network.

COMBINING OTHER -OMICS DATA WITH RNA-SEQ CAN
LEAD TO NEW DISCOVERIES

A connection between the gene expression variability
measured on different levels, cell-to-cell, interindividual,
and interpopulation, has been suggested previously (23, 25).
The rapid development of accessible and cost-efficient
methods for single-cell RNA-Seq will provide us with
improved estimates of cell-to-cell variability in gene expres-
sion (70). Flow cytometry techniques can help in the further
separation into (so-called/the suggested) macroheterogene-
ity, which is the variability that encompasses both on and off
states of genes, as well as microheterogeneity, which rep-
resents the variability in gene expression of genes in differ-
ent cells (37). Furthermore, recently generated large tran-
scriptome data sets for hundreds of individuals (31a, 47)
should increase our understanding of transcriptome variabil-
ity at the population level.

Apart from transcriptomics data, large sets of epigenetics
data will be of great value. For example, the changing land-
scape of histone modifications with age has been established
(89), as has the property of histone modifications to be asso-
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Fig. 5. A: relationships between the initial non-Poisson variability in young mice and the age-mediated responses in the mean mRNAs counts. Gene
expression responses are represented as absolute log» ratios (fop) of mean mRNA counts in old and young mice. GAMLSS estimates of genes’ non-Poisson
variability in young mice are given as ranked values ranging from lowest (1) to highest (10). Spearman correlation coefficients are shown. Trend lines
were generated by LOESS local regression. B, C: TATA-box associated with increased non-Poisson variability and age-mediated response in mean
expression levels. B: boxplots show the initial non-Poisson variability in 5 mo old mice (young, fop) and absolute changes in the mean gene expression
(bottom) for mouse genes classified according to all possible combinations of four promoter motifs: the TATA-box, Initiator (Inr), CCAAT-box and
GC-box. A group of genes lacking any of those is labeled as “none”. C: scatterplot of genes’ group-wise medians in the initial non-Poisson variability
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levels. The Pearson correlation coefficient and significance are indicated.

ciated with the average gene expression and variation in gene
expression (108). Similarly, the beneficial effects of alterations
in diet have been shown to extend the lifespan of mice (7), as
has the methylation of genes and the consequent variation in
expression been shown to contribute to the pathophysiology
of mice on a high-fat diet (113). In line with these two
observations, it has been shown that the suppression of
interindividual variation has positive effects on the lifespans
of C. elegans (75).

Finally, when speaking of gene expression variability, it is
important to consider how the variability in RNA copy number
translates to variability at a protein level. Often there seems to
be a discrepancy between the amount of RNA transcribed and
the amount of the matching protein being produced within
samples (64). Yet many principles of gene noise have been
derived by quantifying reporter gene expression on the protein

level, such as two-color reporter assay (26, 94). To that,
derivations of protein fluctuations from theoretical models of
stochastic gene expression highlight the contribution of RNA-
level noise to protein-level noise (68). Thus, it is reasonable to
propose that gene expression variability might propagate from
RNA to protein, from protein to cell, from cell to tissue, and
from tissue to organism.

To conclude, the analysis of differential transcriptome
variability complements the standard analysis of differential
gene expression and reveals another dimension of expres-
sion analysis. With the further development of tools and
with a wider acceptance of these methods, we will advance
our understanding of the mechanisms underlying the regu-
lation of transcription, common physiological traits, and
disease predispositions.
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