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Highlights
There is increasing evidence of the detri-
mental role of senescent cells in aging.

Clearance of senescent cells has been
shown to improve age-associated pa-
thologies in animal models, leading to
promising new clinical trials.

Different mechanisms of senescent cells
can be exploited pharmacologically to
develop new therapeutic targets.
Cellular senescence is a state of stable cell cycle arrest associated with macro-
molecular alterations and secretion of proinflammatory cytokines and molecules.
From their initial discovery in the 1960s, senescent cells have been hypothesized
as potential contributors to the age-associated loss of regenerative potential.
Here, we discuss recent evidence that implicates cellular senescence as a central
regulatory mechanism of the aging process. We provide a comprehensive
overview of age-associated pathologies in which cellular senescence has been
implicated. We describe mechanisms by which senescent cells drive aging and
diseases, and we discuss updates on exploiting these mechanisms as therapeu-
tic targets. Finally, we critically analyze the use of senotherapeutics and their
translation to the clinic, highlighting limitations and suggesting ideas for future
applications and developments.
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Cellular Senescence: From Physiology to Pathology
Cellular senescence (see Glossary) is a state of stable and generally irreversible growth arrest
that acts as a potent tumor-suppressive mechanism. A major regulator of the senescence-
associated cell cycle arrest is a chronic DNA damage response (DDR), which derives from
unresolved DNA lesions and triggers activation of cell cycle inhibitors. Other common features ob-
served in senescent cells are profound changes in (epi)genetic landscape and gene expression,
persistent macromolecular damage, and aberrant metabolism and activation of a hypersecretory
phenotype [1,2].

The hypersecretory phenotype is defined as the senescence-associated secretory phenotype
(SASP), a collection of chemokines, cytokines, matrix remodeling proteases, and extracellular
vesicles (EVs) [2]. The SASP has been hypothesized to link cellular senescence and inflammaging
[3], and to participate in tissue dysfunction. The SASP is a highly heterogeneous program whose
composition depends on various intrinsic and extrinsic factors [4,5].

Restricted and localized SASP contributes to various beneficial functions. It favors correct organ
patterning during embryogenesis, halts malignant transformation by reinforcing cell cycle arrest
and activating tumor immunosurveillance, and promotes tissue repair [6]. By contrast, persis-
tence of senescent cells and SASP has been associated with chronic inflammation, age-related
pathologies, and a cancer-permissive microenvironment [7]. In this regard, the evolutionary the-
ory of antagonistic pleiotropy is used to explain the senescence phenotype [8]. According to
this theory, a biological trait can be beneficial for survival and reproduction in early life, at the
cost of reduced healthspan at later stages. In recent years, the generation of transgenic
mousemodels reporting and inducibly eliminating senescent cells allowed for a direct demonstra-
tion of the pleiotropic biological functions of senescence (Box 1). Consistently, in a young healthy
individual senescent cells can be induced successfully upon damage, to ensure correct tissue
function and repair, and counteract incipient oncogenic stimuli, whereas their improper activation
and disposal followed by progressive accumulation with age leads to disease (Figure 1). For this
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Glossary
Age-associated diseases: diseases
whose incidence increases with aging,
most of them sharing an inflammatory
pathogenesis and correlating with
increased levels of cell senescence.
Aging: molecular and cellular damage
accumulation over time leading to a
progressive decline in physical and
mental capacity, and to an increased risk
for disease and death.
Apoptosis: programmed and
controlled cell death that regulates
growth, development, tissue
homeostasis, and tumor suppression.
Cellular senescence: heterogeneous
cell state in response to different stress
stimuli, characterized by stable cell cycle
arrest, as well as morphological,
structural, and functional changes,
including enhanced expression and
secretion of proinflammatory mediators.
Frailty: clinical syndrome observed in
older adults that predispose to poor
health, onset and progression of
diseases and decreased capacity to
cope with cellular and tissue stress.
Geroconversion: conversion from
reversible cell cycle arrest (quiescence)
to irreversible cell cycle arrest
(senescence).
Healthspan: period of life where an
individual has good health, free of
disabilities and diseases.
Immunosenescence: gradual age-
associated functional decline of the
immune system, especially of the
adaptative immune system, that
contributes to increased risk ofmorbidity
and mortality.
Inflammaging: low-grade chronic
inflammation, not induced by
pathogens, causing higher risk of
morbidity and mortality in elderly.
Lifespan: measure of populations
average survival time between birth and
death.
Mitochondrial dysfunction-
associated senescence (MiDAS):
cellular senescence originated from
dysfunctional mitochondria, likely as a
result of the accumulation of ROS.
Mitophagy: regulated degradation of
dysfunctional mitochondria by
autophagy.
Paracrine senescence: cellular
senescence originated in a non-cell
autonomous manner via SASP factors
secreted by neighboring senescent
cells.
Progeroid: syndrome or phenotype
mimicking premature aging.

Box 1. Senescent Cell Clearance in Genetic Mouse Models

p16-3MR mice [40]: p16INK4A promoter reporter with functional domains of a synthetic Renilla luciferase (detection by
luminescence), monomeric (m)RFP and truncated herpes simplex virus 1 thymidine kinase (HSV-TK). This construct
allows the identification and isolation of p16INK4a positive cells by in vivo luminescence andmRFP fluorescence. In addition,
HSV-TK allows the specific elimination of p16INK4a+ cells by treatment with ganciclovir (GCV).

INK-ATTAC mice [69]: p16INK4a promoter reporter followed by GFP to allow p16INK4a+ cells, and with the fusion protein
construct consisting of a FK506-binding protein (FKBP) and caspase 8 (Casp8). In this mouse model, administration of
the synthetic molecule AP20187 induces the dimerization of FKBP-Casp8 and p16INK4A+ cells are selectively killed by
caspase-dependent apoptosis.

INK-NTR mice [99]: a modification of the INK-ATTAC mouse, where FKBP-Casp8 is replaced with the NTR gene.
Metrodinazole (Mtz), a nontoxic prodrug, is administered to these mice and then converted into a cytotoxic metabolite
by NTR, hence eliminating p16INK4a+ cells.

ARF-DTR mice [123]: promoter of p19-Arf, together with luciferase gene and diphtheria toxin (DT) receptors, allowing the
detection by luminescence in vivo of Arf+ cells as well as their elimination by DT administration.
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reason, interventions selectively targeting cellular senescence hold the potential to delay aging
and alleviate multiple age-related dysfunctions.

Senescence as a Basic Aging Mechanism
Senescent cells exhibit and integrate several hallmarks of aging (Figure 2) [9]. Progressive telo-
mere erosion leads to the induction of senescence via p53-dependent DDR, coordinated by
the activity of ataxia telangiectasia mutated (ATM) and ATM and Rd3-related (ATR) [10]. Stable
p53 leads to cell cycle exit in part by inducing the expression of the cyclin-dependent kinase
(CDK)2 inhibitor p21WAF1/Cip1, which suppresses the phosphorylation of pRB. Increased protein
expression of the CDK4/6 inhibitor p16INK4a also blocks pRB phosphorylation, which induces cell
proliferation arrest by inhibiting the activity of E2F protein members. Telomere attrition induces
alteration of DNA structure, referred to as telomere uncapping, causing additional DNA breaks
and genome instability [11]. DNA lesions, such as those induced by oxidative stress, radiation
(e.g., UV light and ionizing radiation) and genotoxic agents (e.g., chemotherapeutic) can be con-
verted to DNA double-strand breaks (DSBs) [12], to which cells rapidly respond and attempt re-
pair by activating DDR. Persistence of DDR initiates the secretion of SASP factors [13]. Like
telomeres, dysfunctional mitochondria lead to senescence [14]. This is partially due to increased
mitochondrial mass, changes in fusion and fission rates, and altered membrane potential [14].
Mitochondrial dysfunction-associated senescence (MiDAS) leads to hyperproduction of
reactive oxygen species (ROS) which in turn drive DDR and SASP factors secretion [15,16].
MiDAS and increased mammalian target of rapamycin (mTOR) activity can also derive from de-
regulation of nutrient sensing molecules. In particular, low NAD+/NADH ratio and depletion of mi-
tochondrial malic enzymes can activate AMP-activated protein kinase (AMPK), which can in turn
trigger cell cycle arrest via p53 [17]. Increases in AMP:ATP and ADP:ATP ratios also contribute to
functional decline of sirtuin proteins and poly-ADP ribose polymerase (PARP), which are impor-
tant modulators of SASP and NF-κB [15,16]. Despite much evidence on the activity of mTOR
in SASP regulation, its role in autophagy in senescent cells is still not clear. In accordance with
the conventional role of mTOR being an inhibitor of autophagy, studies have shown that suppres-
sion of autophagy can induce senescence [18]. Paradoxically, increased autophagic flux is nec-
essary to counteract the endoplasmic reticulum stress and unfolded protein response (UPR), in
part deriving from the high load of SASP secretion and thus contributing to survival of senescent
cells [19]. This suggests the possibility of general and selective autophagy having opposing roles
during senescence activation [20]. Altered protein function results from the generation of ROS
and enhanced DDR. The majority of protein containing serine/threonine or cysteine residues
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Senescence-associated secretory
phenotype (SASP): robust and
heterogeneous secretion of soluble
modulators by senescent cells, including
cytokines, chemokines, growth factors,
proteases, and EVs.
Senotherapeutics: molecules and
strategies that target cellular
senescence, which can be classified as
senolytics (selective elimination of
senescent cells via programmed cell
death) and senomorphics/
senostatics (modulation of
senescence-associated phenotypes
without senolysis).
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can be susceptible to oxidative damage and activate senescence via the extracellular signal-
regulated kinases (ERK) signaling cascade [21]. Increased ROS levels can also affect correct
protein folding and aggregation which are characteristic of most neurodegenerative disorders.
Of note, enhanced ROS correlate with altered and reduced enzymatic activity of different chaper-
ones (such as heat shock proteins, HSPs) implicated in the UPR [22], which is coupled to aber-
rant autophagic-mediated protein degradation during senescence. A common characteristic of
aging is chronic low-grade inflammation, also known as sterile inflammation (activation of immune
response in absence of pathogens). Increased senescence burden influences macrophages,
T cells, and natural killer function favoring a switch toward a more immunosuppressive function
between young and old tissue microenvironments [23,24]. As the major T lymphoid organ, the
thymus regulates T cell repertoire and immune tolerance. Thymic involution with age, is associ-
ated with contraction of naïve T cells and decreased capacity of immune response to infection
[25]. Senescence occurs during thymic involution, contributing to tissue atrophy, inflammation,
and thymopoietic decay [26]. Importantly, senescent T cells bearing dysfunctional mitochondria,
have been shown to trigger a type I cytokine storm in peripheral organs, causing an accelerated
aging phenotype in mice [27]. Furthermore, increased mTOR activity and mitochondrial oxidative
stress have been linked to senescence of hematopoietic progenitor cells in elderly people [28].

Thus, immunosenescence contributes to altered inflammatory response and impaired stem
cell function [3,9], which might be explained by incipient senescence activation, sustained secre-
tion of SASP factors and senescence-induced inflammasome activation [29]. Accumulation of se-
nescence and secretion of SASP factors during aging fosters inflammatory responses, alters cell-
to-cell communication, and limits regeneration thus contributing to tissue dysfunction, frailty,
and disability [30–32].
TrendsTrends inin Cell BiologyCell Biology

Figure 1. Senescence-Centric View of Aging. Some of the hallmarks of aging (mitochondrial dysfunction, deregulated nutrient-sensing, loss of proteostasis,
epigenetic alterations, telomere attrition, and genomic instability) induce normal cells to become senescent, which in turn can induce paracrine senescence in nearby
normal cells through senescence-associated secretory phenotype (SASP). Senescence-promotion through SASP together with a decline in the immune system
activity, converge to induce organismal accumulation of senescent cells. In aged individuals, chronic accumulation of senescent cells contributes to tissue dysfunction
and increased risk of age-associated diseases development. Nevertheless, senescent cells elimination with different senotherapeutic approaches can improve
healthspan in aged individuals.
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Figure 2. Senescent Cells Play a Role in Age-Associated Diseases. Elimination of senescent cells had led to a beneficial impact on the indicated age-related
diseases. Some of the senescent cells described in the literature as implicated in the disease development have also been depicted. Abbreviations: AF, annulus
fibrosus cells; NP, nucleus pulposus cells; RPE, retinal pigment epithelium.
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Targeting Senescence in Age-Related Diseases
Preclinical studies have highlighted that specific clearance of senescent cells in genetic animal
models (Box 1) or with senotherapeutics with different molecular targets (Table 1) alleviates
age-associated diseases and frailty (Figure 2). In the following sections we discuss the most
relevant findings in these areas.

Musculoskeletal Dysfunctions
Osteoarthritis
Osteoarthritis (OA), a disorder that involves themovable joints, is the leading cause of chronic pain
and disability in elderly people [33]. The accumulation of senescent cells in the aged cartilage
and their involvement in OA has been reported in many studies [34–39]. In fact, the causal role
of senescence in OA was demonstrated by the injection of senescent cells into the knee of
mice, which led to a state resembling OA [39]. Senescent cells arise in the cartilage during
aging, but also as a consequence of traumatic injuries in an attempt to promote tissue
780 Trends in Cell Biology, October 2020, Vol. 30, No. 10
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Table 1. Senotherapeutics and Their Molecular Targetsa

Drug Function Molecular targets Involvement Refs

Dasatinib + quercetin Senolytic Ephrin receptors +
PI3K/AKT/ROS/P53/p21/serpine/
HIF-1a

Osteoporosis, disc degeneration; obesity;
glaucoma; frailty, AD; lung fibrosis

[46–48,77,84,85,94,96,124]

Navitoclax (ABT-263) Senolytic Bcl-2/Bcl-x family AD, cancer; stem cell rejuvenation, lung
fibrosis, atherosclerosis

[77,99,114,125,126]

ABT-737 Senolytic Bcl-2/Bcl-x family Lung function, accelerated aging, liver
regeneration

[75,127,128]

ABT-199 Senolytic Bcl-2 Diabetes type 1 [97]

PZ15227 Senolytic Bcl-xl Bone loss, myeloid skewing [115]

A1331852 Senolytic Bcl-2/Bcl-x family Huvec, IMR90 [129]

A1155463 Senolytic Bcl-2/Bcl-x family Huvec, IMR90 [129]

UBX0101 Senolytic P53/mdm2 Osteoarthritis [36]

Fenofibrates Senolytic PPARα agonist Osteoarthritis [41]

AT-406 Senolytic IAP1/2/XIAP inhibitors Osteoarthritis [42]

FOXO4-DRI Senolytic p53/foxo4 interaction/Bcl-x family Frailty, nephropathy, natural aging [130]

Cardiac glycosides Senolytic Na+/K+ ATPase pump Cancer; lung fibrosis [131,132]

Fisetin Senolytic Bcl-2/Bcl-x family/ PI3/AKT Osteoarthritis, aging [133,134]

Piperlongumine Senolytic Bcl-2/Bcl-x family/ PI3/AKT Senescent lung fibroblasts [135]

Curcumin Senolytic Broad spectrum
(e.g., BCL-2, NF-KB)

Disc degeneration [66]

17-DMAG Senolytic HSP-90 inhibitor Frailty/healthspan [136]

ARV825 Senolytic BET family inhibitor - NHEJ Hepatocarcinoma [137]

KU-60019 Senolytic ATM Wound healing [138]

SSK1-Gemcitabine Senolytic Lysosomal β-galactosidase Lung/liver fibrosis, frailty [70]

2-DG Senolytic Lysosomal V-ATPases Cancer [19]

Rapamycin Senomorphic mTOR Osteoarthritis, sarcopenia [60,139]

Metformin Senomorphic AMPK activator Osteoarthritis, disc degeneration [43,140]

Ruxolitinib Senomorphic JAK1/2 inhibitor Osteoporosis, frailty [47,53]

NBD
peptide/mimetics

Senomorphic NF-κB inhibitor Aging, osteoporosis [141]

aAbbreviations: 17-DMAG: 17-dimethylaminoethylamino-17-demethoxygeldanamycin; 2-DG: 2-deoxy-D-glucose; NHEJ, non-homologous end joining.
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regeneration [36,40]. In a post-traumatic OAmousemodel selective clearance of senescent cells,
achieved by a genetic (p16-3MR; Box 1) or pharmacological (UBX0101; Table 1) strategy, halted
OA progression, with increased synthesis of extracellular matrix (ECM) components, reduced ex-
pression of matrix metalloproteinase (MMP)-13 and interleukin (IL)-1β, and reduced pain [36]. In
addition, elimination of naturally age-accumulated p16INK4a cells resulted in reduced cartilage de-
generation. In OA human chondrocytes, UBX0101 treatment improved the synthesis of ECM
proteins, promoting a proregenerative environment [36], while another senolytic compound,
Fenofibrate (a PPARα agonist), reduced proteoglycan loss in IL-1β-treated human cartilage
explants [41]. Moreover, local elimination of senescent cells by inhibition of the antiapoptotic pro-
teins cellular inhibitor of apoptosis protein (c-IAP)1/2 and X-linked inhibitor of apoptosis protein
(XIAP) with the molecule AT-406 was shown to reduce SASP secretion and promote regenera-
tion in a post-traumatic OA rat model [42]. Finally, increasing evidence suggests that molecules
targeting signaling networks involved in SASP (e.g., rapamycin and metformin) promote a regen-
erative environment in cartilage and exert beneficial effects in preclinical models [43,44].
Trends in Cell Biology, October 2020, Vol. 30, No. 10 781
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Osteoporosis
Osteoporosis is characterized by the decrease in the total bonemass accompanied by increasing
risk of bone fractures. During aging, bone loss derives from reduced bone formation and in-
creased formation of bone marrow fat. Higher levels of p16INK4a expression are observed in os-
teoblast progenitors, osteoblasts, and osteocytes in old mice, and in human biopsies [45].
Treatment of the progeroid mouse model Ercc1(-/Δ), which accumulates DNA damage due to
impaired nuclear genome repair capacity, with the senolytic cocktail dasatinib (D; anticancer
drug with several functions; Table 1) plus quercetin (Q; polyphenol with several functions;
Table 1) improved bone mineral content and density [46]. Moreover, genetic (INK-ATTAC mice;
Box 1) or pharmacological (D + Q) approaches improved both the antiresorptive and anabolic
pathways leading to increased bone mass and strength in old mice [47], and reduced
radiotherapy-induced bone loss [48,49]. Several preclinical studies have shown that molecules
that inhibit oxidative stress can result in reduced osteocyte senescence and SASP, and improved
bone structure [50–52]. For example, the FDA-approved Janus kinase (JAK 1/2) and signal trans-
ducer and activator of transcription protein 3 (STAT3) inhibitor, ruxolitinib, shown to be a SASP
inhibitor [53], reduce bone resorption while promoting new bone formation [47].

Sarcopenia
Aging is associated with pronounced loss of skeletal muscle mass and function, a process de-
fined as sarcopenia, which significantly contributes to frailty and increasedmortality in the geriatric
population [54]. A role for senescence in promoting muscle weakness and frailty was demon-
strated by a study that showed improved physical function (walking speed, endurance, and
grip strength) of aged mice treated with the senolytics D+Q [55]. Mechanistically, recent studies
have suggested that satellite cell senescence is key in the development of sarcopenia. Satellite
cells are resident muscle stem cells that are required for skeletal muscle regeneration and growth
after injury and exercise, after which these cells break quiescence, proliferate, and contribute to
muscle fiber repair and growth [56,57]. In skeletal muscles of geriatric (28–32 months old) and
progeroid mice satellite cell activation is impaired by geroconversion [58] (i.e., transition from
quiescence to senescence), as demonstrated by increased senescence associated (SA)-β galac-
tosidase staining and p16INK4a and Igfbp5 expression [59]. Senescence in geriatric satellite
cells was found to be caused by decreased mitophagy and increased ROS production [60],
and p16INK4a or ROS inhibition or autophagy activation restored satellite cell function and muscle
regeneration [59,60]. Additionally, transforming growth factor (TGF)-β signaling is also implicated
in satellite cell senescence by promoting a Smad3-mediated increase of CDKs (most notably
p15INK4B and p21WAF1/Cip1), and inhibition of TGF-β signaling improves muscle regeneration in
aged mice [61]. Senescent fibroadipogenic progenitor cells [62] and postmitotic muscle fibers
[63] have been also detected in skeletal muscles of exercised and agedmice, but the contribution
of these senescent subsets to sarcopenia remains to be determined. In addition, senescence in
other cell types in the body may contribute to sarcopenia, as demonstrated by transplantation of
senescent preadipocytes in young mice, which resulted in marked physical dysfunction and
weaker muscles [55]. Finally, satellite cell senescence has been also reported in mouse models
of degenerative muscle wasting diseases such as muscular dystrophies [64,65], suggesting
that cellular senescence also plays a role in the pathology of other muscle wasting conditions.

Intervertebral Disc Degeneration
Intervertebral disc degeneration (IVDD) is considered as a natural progression in the aging pro-
cess and is often associated with chronic back pain. Clearance of senescent cells in progeroid
mice with D+Q increases the levels of proteoglycans in the nucleus pulposus (NP) of the IVD,
suggesting an improvement in the ECM of the tissue [46]. Clearance of senescent human NP
cells with curcumin or o-vanillin increases the number of Ki-67-positive cells and reduces SASP
782 Trends in Cell Biology, October 2020, Vol. 30, No. 10
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expression, as well as promoting the synthesis of ECM components [66]. Specific elimination of
p16INK4a-positive cells in old p16-3MR mice ameliorates the aggrecan fragmentation and histo-
logical score of IVD when compared with young mice, with increased expression of aggrecan
and inhibition of MMP-13 expression [67].

Frailty
Frailty represents an age-associated syndrome involving vulnerability and a progressive decline in
multiple physiologic systems. Senescent cells accumulation seems to be an important risk factor
in frailty. Transplantation of a small number of senescent cells in both young and aged mice is
enough to induced a frailty state (physical dysfunction) and reduced lifespan [55]. Clearance of
senescent cells in INK-ATTAC mice [68,69] or with D+Q [46,55], as well as targeting SASP
with JAK inhibitors [53], alleviates frailty symptoms in old mice, and correlates with delayed
aging-related pathologies and increased healthspan. In fact, in a more recent study, clearance
of naturally occurring senescent cells in old mice with the SSK1 prodrug, decreased the overall
chronic and systemic inflammation and led to increased physical performance and reduced
expression of age-associated gene signatures [70].

Fibrotic Diseases
Primary Sclerosing and Biliary Cholangitis
Liver cholangitis is a condition of progressive tissue dysfunction manifested with portal inflamma-
tion and varying degree of fibrosis and necrosis. The increased burden of both parenchymal and
biliary senescent cells is considered a driver of chronic liver diseases in humans [71]. Resolution of
liver fibrotic scars is mediated by crosstalk with resident immune cells. Indeed, blockade of
immune-ligand specific clearance of senescent hepatic stellate cells enhanced their accumulation
exacerbating fibrosis [72]. In a p21- bile duct-inducible mouse model, senescent cholangiocytes
aggravate biliary damage through SASP secretion, exacerbating collagen deposition and reduc-
ing parenchymal regenerative function [73]. Blockade of TGF-β receptor signaling or hepatocyte-
dependent SASP secretion with senolytics upon acute injury shows a reduction in jaundice,
resolution of necrosis, and restored regeneration [74,75].

Idiopathic Pulmonary Fibrosis
Characterized by alveolar wall disruption and progressive inflammation, idiopathic pulmonary
disease (IPF) severity is associated with incipient senescent mesenchymal and epithelial cells
[76]. In IPF models, clearance of senescent epithelial cells in INK-ATTACmice or by the senolytics
D+Q, improves overall pulmonary function and elastance [77] as seen also by reductions in ECM
deposition and the associated profibrotic SASP [78].

Chronic Kidney Disease
The gradual loss of glomerular filtration capacity is a characteristic of chronic kidney disease (CKD)
that is often associated with diabetes and hypertension in humans. Increased senescence of tubu-
lar kidney cells has been associated with CKD as well as chronic allograft nephropathy in both
mouse models and humans [79]. The unilateral ureteral obstruction injury (UUO) is an acute
model in which a transient activation of senescence has been shown to be beneficial, by directly
limiting hypertrophy and inflammation [80]. Additionally, in an ischemia–reperfusion mouse
model, removal of cells expressing p16INK4a ameliorates interstitial fibrosis and tubular atrophy [81].

Neurodegeneration
Alzheimer’s Disease
Alzheimer’s disease (AD), whosemain risk factor is advanced age, is a common andmultifactorial
neurodegenerative disease causing progressive dementia [82]. p16INK4a upregulation has been
Trends in Cell Biology, October 2020, Vol. 30, No. 10 783
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described in astrocytes of AD patients [83], and staining for senescence markers in human AD
tissues [84] and transcriptional upregulation of senescence-associated genes in laser capture
microdissected cortical neurons containing neurofibrillary tangles from AD brains [85] provide
further evidence of the involvement of senescence in AD. Increased p16INK4a levels are found in
hippocampal neurons [86] and in oligodendrocyte progenitor cells [84] in amyloid mouse models.
In addition, elimination of senescent oligodendrocyte progenitor cells improves cognitive function
and reduces amyloid load [84]. In AD models of dysfunctional tau protein, genetic or pharmaco-
logical elimination of senescent cells have also been shown to improve disease progression
[85,87].

Parkinson’s Disease
The prevalence of Parkinson’s disease (PD), the secondmost common neurodegenerative disor-
der, increases with advanced age [88]. A recent study with an incident PD cohort identified that
both inflammatory and senescencemarkers (p16INK4a) derived from blood are valuable predictors
of clinical progression in PD patients [89]. In mouse models, elimination of senescent cells im-
proves neurological functions. Neurotoxin-induced PD has been shown to be accompanied by
accumulation of senescent cells, while the elimination of senescent astrocytes by the use of a
transgene protects against neuropathology [90]. Furthermore, inhibition of astrocyte senescence
with the antioxidant astragaloside IV confirms the beneficial effect of removing senescent astro-
cytes in PD [91]. Senescent dopaminergic neurons have been detected in a model of familial
PD [92].

Diabetes
Type 2 Diabetes
Characterized by insulin resistance in peripheral organs, type 2 diabetes (T2D) is highly asso-
ciated with age. Individuals predisposed to T2D diabetes and obesity often develop comor-
bidities such as hypertension, osteoporosis, anxiety, and skeletal fragility. Senescent cells
can negatively impact the proper function of adipocyte progenitor cells and osteocytes via se-
cretion of MMPs, activin A, tumor necrosis factor (TNF), and macrophage-stimulating
chemokines [93]. Clearance of senescent adipocytes in mice fed a high-fat diet or knockout
for the leptin receptor improves insulin sensitivity and reduces fat hypertrophy, possibly as the con-
sequence of reduced inflammatory SASP factors interferon (IFN)-γ, IL-1β, and macrophage
colony-stimulating factor (M-CSF) [94]. Senolysis of p16INK4a-expressing cells also restored
β-cell function, and improved glucose tolerance and insulin activity in liver, fat, and muscle
tissues [95]. In addition to ameliorating several metabolic parameters, treatment with D+Q
in obese mice also reduced diabetic nephropathy, leading to an improvement in kidney proteinuria
and glomerulopathy [96].

Type 1 Diabetes
Cellular senescence is also implicated in the pathogenesis of type 1 diabetes (T1D), a disease
characterized by insulin deficiency due to the progressive immune-mediated elimination of pancreatic
β cells (PBCs). A recent study demonstrated that targeted elimination of a subset of senescent PBCs
is sufficient to protect from T1D development [97].

Cardiovascular Disease
Atherosclerosis
Atherosclerosis is characterized by the formation of growth plaques in the arterial lumen, leading
to blood flow reduction and increasing the risk of cardiovascular diseases and stroke [98].
Direct involvement of cellular senescence in atherosclerosis was suggested by the detection
of senescence markers in endothelial-like cells, vascular-smooth-muscle-like cells, and
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Table 2. List of Completed, Ongoing, and Planned Clinical Trials with Senotherapeutic Compounds

Study identifiera Type Condition Participants Senolytic Status (Refs)

NCT02848131
(Mayo Clinic)

Phase II
Rc, OL

Diabetic kidney disease n = 9 (female n = 2, male
n = 7, mean age: 68.7 yr)

D+Q (3 consecutive days)
D: 100 mg/day (d)
Q: 1000 mg/d

Completed
[113]

NCT02874989
(Wake Forest University)

Phase I
R, OL, P

Idiopathic pulmonary
fibrosis

n = 14 (≥50 yr) D+Q (3 consecutive days for 3 wk)
D: 100 mg/d
Q: 1250 mg/d

Completed
[112]

NCT02652052
(Mayo Clinic)

Pilot
R, OL

Stem cell transplant n = 10 (HSCT survivors
≥18 yr)

D+Q (3 consecutive days)
D: 100 mg/d
Q: 1000 mg/d

Recruiting

NCT04063124: SToMP-AD
(Texas Health Science
Center)

Phase I/II
OL

AD n = 5
(N65y)

D+Q (intermittent: 2 d on, 14 d off
for 12 wk)

Not yet
recruiting

NCT04313634
(Mayo Clinic)

Phase II
R, OL

Healthy (aging) n = 120
(female ≥70 yr)

D+Q or Fisetin (5 dosing periods
repeated every 28 d over 20 wk)
D: 100 mg/d (2 d)
Q: 1000 mg/d (3 d)
Fisetin: 20 mg/kg/d (3 d)

Not yet
recruiting

NCT03325322
(Mayo Clinic)

Phase II
R, DB, P

CKD n = 30
(40–80 yr)

Fisetin: 20 mg/kg/d for 2
consecutive days

Recruiting

NCT03430037: AFFIRM
(Mayo Clinic)

Phase II
R, DB, P

Frail elderly syndrome n = 40
(female ≥70 yr)

Fisetin: 20 mg/kg/d for 2
consecutive days/wk (2 mo)

Recruiting

NCT03675724:
AFFIRM-LITE
(Mayo Clinic)

Phase II
R, DB, P

Frail elderly syndrome n = 40
(adult ≥70 yr)

Fisetin: 20 mg/kg/d for 2
consecutive days (single dose)

Recruiting

NCT04210986
(Steadman Philippon
Research Institute)

Phase I/II
R, DB, P

OA
(knee)

n = 72
(adult 40–80 yr)

Fisetin: 20 mg/kg/d for 2
consecutive days/wk

Recruiting

NCT03513016
(Unity Biotechnology)

Phase I
R, DB, P

OA
(knee)

n = 78
(adult 40–85 yr)

UBX0101:
dose-finding study (single dose)

Completed

NCT04129944
(Unity Biotechnology)

Phase II
R, DB, P

OA
(knee)

n = 180
(adult 40–85 yr)

UBX0101:
0.5, 2.0, or 4.0 mg single dose

Active

NCT04349956
(Unity Biotechnology)

Phase II
R, DB, P

OA
(knee)

n = 180
(adult 40–85 yr)

No intervention:
Long-term follow-up study patients
NCT04129944

Enrolling by
invitation

NCT04229225
(Unity Biotechnology)

Phase I
R, DB, P

OA
(knee)

n = 36
(adult 40–85 yr)

UBX0101:
8.0 mg single dose or 2 × 4.0 mg
repeat dose

Recruiting

Study identifiera Type Condition Participants Senostatic Status (Refs)

NCT01649960: CARE
(Mayo Clinic)

Phase I
OL

Coronary artery disease n = 13
(adult ≥60 yr)

Rapamycin:
0.5, 1, or 2 mg daily for 12 wk

Completed
[142]

NCT02874924
(The University of Texas
Health Science Center)

Phase II
R, DB, P

Aging n = 34
(adult 70–95 yr)

Rapamycin (Rapamune/sirolimus):
1 mg daily for 8 wk

Completed

NCT03103893
(Drexel University)

Phase I/II
OL, P

Dermal atrophy n = 36
(adult 40–100 yr)

Rapamycin (topical on skin)
0.5 ml daily (10 μM cream)

Completed
[143]

NCT01462006
(NHLBI, University of Virginia)

Pilot
R, DB, P

Idiopathic pulmonary
fibrosis

n = 32
(adult 25–85 yr)

Rapamycin (sirolimus)
concentration unknown

Active

NCT04200911: CARPE DIEM
(The University of Texas
Health Science Center)

Phase I AD n = 10
(adult 55–85 yr)

Rapamycin (Rapamune/sirolimus):
1 mg orally daily for 8 wks

Not yet
recruiting
[144]

NCT02432287: MILES
(Albert Einstein College of
Medicine)

Phase IV
R, DB, P

Aging
(impaired glucose
tolerance)

n = 16
(adult ≥60 yr)

Metformin:
1700 mg daily

Completed

(continued on next page)
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Table 2. (continued)

Study identifiera Type Condition Participants Senolytic Status (Refs)

NCT02570672 Phase II
R, DB, P

Frailty n = 120
(adult 65–90 yr)

Metformin:
1000 mg twice daily

Recruiting
[145]

NCT03451006
(Mayo Clinic)

Phase II
R, DB, P

Frailty n = 12
(adult ≥60 yr)

Metformin:
up to 2 g daily for 1 yr

Recruiting

TAMEb R, DB, P Aging and age-associated
disease

n = 3000
(adult 65–80 yr)

Metformin:
850 mg twice daily

Not yet
recruiting
[122]

NCT03309007
(University of New Mexico)

Phase III
R, DB, P

Prediabetes n = 25
(adult 30–70 yr)

Metformin:
1500 mg daily for 1 mo

Active

aClinical trials. gov identifier.
bNo identifier (not yet recruiting).
cAbbreviations: DB, double-blind; HSCT, hematopoietic stem cell transplantation; OL, open label; P, placebo-controlled; R, randomized.
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foamy macrophages in plaques from mouse models of this disease [99–101]. Importantly,
depletion of senescent cells using transgenic mouse models (Box 1) or senolytics (navitoclax;
Table 1) results in decreased plaque formation and plaque size and reduced expression of
proatherogenic SASP factors [99]. Moreover, ablation of senescent cells in established plaques
increases plaque stability, suggesting that removal of senescent cells is beneficial at all stages of
atherosclerosis [99].

Cardiac Dysfunction
Cardiac aging, even in the absence of other systemic risk factors, leads to structural and func-
tional aberrations that can lead to heart failure. Recent studies showed that senescent cells
also contribute to age- andmetabolic-syndrome-associated cardiac dysfunction. Senescent car-
diac progenitor cells are known to accumulate upon aging [102]. In addition, a recent study sug-
gested that with age postmitotic cardiomyocytes enter a senescence-like state, induced by
telomeric damage independent from telomere length, and contribute to cardiac fibrosis and hy-
pertrophy [63]. Importantly, ablation of senescent cells in aged mice using the INK-ATTAC
mouse model or senolytics (D+Q or navitoclax) resulted in a decrease of fibrosis and hypertrophy
and increase in smaller proliferating cardiomyocytes, suggesting that removal of senescent
cardiomyocytes and/or cardiac progenitor cells could rescue age-associated cardiac remodeling
[63,68,102]. In addition, clearance of senescent cells using the p16-3MRmousemodel improved
cardiac function in obesemice and in mice treated with the chemotherapeutic doxorubicin, which
induces senescence [94,103].

Cancer
Cancer is characterized by an uncontrollable proliferative potential and by the capacity to evade
from the tissue of origin and migrate to distal tissues. Similar to other diseases, aging and senes-
cence play key roles in cancer development [104]. By contrast to the obvious tumor-suppressive
function of the senescence-associated growth arrest, it has been shown that senescent cells
have a paradoxical protumorigenic potential mediated by both cell and non-cell autonomous
mechanisms. Senescence-associated stemness is a cell-autonomous feature that exerts highly
aggressive growth potential upon escape from cell-cycle blockade, and has been shown to be
enriched in relapsed tumors [105]. Genomically unstable cancer cells can evade the toxicity of
anticancer treatments by acquiring a senescent-like-phenotype (dormant state), and then bypass
growth arrest, recovering the aggressive and uncontrolled proliferation [106]. Hence, strategies
that combine senescence-inducing cancer therapies with senolytics might prevent the regrowth
of senescent cancer cells [107]. SASP factors secreted by senescent cells can promote several
786 Trends in Cell Biology, October 2020, Vol. 30, No. 10



Outstanding Questions
Is it possible to target mechanisms that
are unique to senescent cells to avoid
side effects?

How heterogeneous is the phenotype
of age-related senescence? Can we
specifically interfere with detrimental
senescence?

What are the biomarkers that can be
exploited for detection of senescent
cells in vivo and to monitor the
efficacy of senotherapies?

Will the selective elimination of senescent
cells havea systemic health improvement?

How do we evaluate the effectiveness
of senescent cells removal during
aging?

How frequent and fromwhich age should
senotherapies be provided to achieve
maximum healthspan improvement?

What are the effects of combining
senotherapies with other rejuvenation
strategies?
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processes involved in tumorigenesis, including proliferation migration/invasiveness, promotion of
epithelial-to-mesenchymal transition, vascularization, protection from immunosurveillance and
cancer relapse [108]. Systemic accumulation of senescent cells due to anticancer therapies
can not only promote tumorigeneses, but also promote the development of other age-
associated diseases such as cardiovascular or neurodegenerative diseases [109]. Taking into
consideration the detrimental effect of senescent cell accumulation in cancer, senotherapeutics
seem a promising strategy to reduce cancer growth and relapse [103,107,110,111], as well as
the adverse effects of cancer interventions [49,103].

From Bench to Bedside
Preclinical findings that clearance of senescent cells or inhibiting the SASP using senotherapeutics
can improve healthspan in mice and other animal models led to the first clinical trials in humans
(Table 2). In a single-arm, open-label pilot study without placebo (NCT02874989), repeated D+Q
treatment of IPF patients was safe, with only mild to moderate reversible adverse events, and
resulted in significant improvement of functional measures, such as 6-min walking distance, 4-m
gait speed, chair-stands, and Short Physical Performance Battery scores [112]. In a different
Phase I study (NCT02848131), a single 3-day course of D+Q in diabetic patients with CKD was
also found to be safe and resulted in significant decreases in senescent cells in skin and adipose
tissue, and a decrease of circulating SASP factors (IL-1α, IL-2, IL-6, IL-9, MMP-2, MMP-9, and
MMP-12) [113]. The senolytic compound UBX0101 is being tested in clinical trials for OA treatment.
In the first completed Phase I clinical trial performed (NCT03513016), a one-time intra-articular
administration of UBX0101 was found to have no serious adverse effects but the effectiveness
was not statistically significant, mainly due to the low number of patients involved (https://
acrabstracts.org/abstract/). A Phase II clinical trial (NCT04129944) to explore the effect of a single
dose of UBX0101 in a bigger cohort of approximately 180 patients is expected to be completed
soon. In parallel, a second Phase I clinical trial (NCT04229225) that includes two cohorts of
OA patients – one treated with a single dose, one with repeated doses – is currently ongoing.
Several other clinical trials are currently planned, ongoing, or recruiting patients for OA, CKD, and
frail elderly syndrome (Table 2). In addition, two other senolytic compounds that target BCL
(UBX1967/UBX1325) are currently in an investigational new drug (IND) enabling phase for treatment
against age-relatedmacular degeneration, diabetic macular edema, and diabetic retinopathy, even if
the evidence for a direct role of cellular senescence in these diseases remains scant.

Concluding Remarks
The development of more sophisticated tools and models, also favored by increased financial in-
vestments in the field, have improved our understanding of the mechanisms regulating the
proaging and prodisease function of senescent cells. Targeting senescence holds the potential
to significantly improve healthspan and alleviate age-associated dysfunctions, frailty, and tissue
fibrosis, therefore its impact in the population can be tremendous. However, the development
and application of senotherapies is far from completed, and important questions remain (see
Outstanding Questions).

First, current senotherapies mainly involve repurposed drugs with on- and off-target effects. For
example, targeting BCL2 family members has on-target toxicity on certain immune cells and
platelets, and can result in thrombocytopenia and lymphopenia. Improving selectivity of these
compounds by targeting more senescence-specific mechanisms might alleviate toxicities
[114,115].

Second, senotherapies are not taking heterogeneity into account and, consequently, indiscriminately
target both beneficial and detrimental senescent cells.
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We still lack a comprehensive phenotypical characterization of age-associated senescent cells
in vivo. Ex vivo experiments have suggested that senescence can be heterogeneous, and that
several senescence-associated features, including the SASP, are dependent on intrinsic and ex-
trinsic factors including cell type, senescence inducer, tissue of origin, and environmental condi-
tions [4,5,116]. The phenotypical heterogeneity suggests the possibility that different subsets of
senescent cells could coexist, and that not all senescent cells might be detrimental. Identification
of mechanisms associated to specific subtypes of senescent cells might help to develop more
specific and better tolerated therapies.

Third, established senescence markers such as p16INK4a, p21WAF1/Cip1, and SA-β galactosidase
can be used to identify senescent cells, but these markers are neither specific nor universal
[75,117]. Recent studies of gene signatures in different cell types and in vitro senescence models
have suggested that general senescence-associated gene signatures might exist, but these sig-
natures remain to be validated at the protein level in humans [5,116]. Novel and more reliable bio-
markers are essential to evaluate therapy efficacy, andmight help to monitor the elimination of the
most detrimental subsets of senescent cells. There is increasing evidence that a small fraction of
senescent cells in a population is the main source of SASP factors [118] and inflammatory re-
sponse. If specific subtypes of senescent cells can be distinguished this will be also relevant for
biomarker development. A limiting factor on the study of subtypes of senescence derives from
technical hurdles, but the continuous advancements in single cell technologies might minimize
this issue. Moreover, past studies have largely focused on the transcriptome/proteome of senes-
cent cells. The investigation of other levels of complexity in circulating factors such as EVs, long
noncoding RNAs, andmetabolites will probably add to the source of biomarkers. It is conceivable
that senescence-derived circulating factors might function as biomarkers to recognize and selec-
tively target senescent cells exhibiting the hypersecretory phenotype while maintaining other cell
types that are beneficial.

Fourth, elimination of senescent cells has shown the potential to be a general anti-aging strategy
achieving generalized improvement of healthspan and reduction of multiple age-related dysfunc-
tions at the same time. However, translation of these findings remains difficult, since aging as
such is not considered to be a disease or syndrome by regulatory agencies. This is in contrast
with obesity, the othermajor risk factor for chronic diseases, which is officially recognized as a dis-
ease. Therefore, surrogate readouts need to be used to evaluate the efficacy of antiaging strate-
gies. One approach is to use frailty as an aging indicator [119], and frailty indices to evaluate the
effect of therapeutic interventions [120] (Table 2). A major limitation remains the definition of strict
parameters to measure frailty in humans, but attempts to overcome this issue are ongoing [121].
An additional approach to evaluate antiaging therapies is to monitor their effect on multiple dis-
eases in the same study. This approach is being pioneered by the Targeting Aging with Metformin
(TAME) trial, which aims to determine if metformin treatment in elderly people can delay accumu-
lation of age-associated diseases rather than targeting individual diseases [122] (Table 2).

Fifth, if senotherapies can be tested as antiaging interventions in humans, then more studies on
the treatment regimen and frequency need to be performed. The few available experiments in
mouse models suggest that intermittent dosing of senolytics starting at middle age could have
the largest benefit. On the one hand, such a strategy would avoid a significant burst of senes-
cence throughout the lifetime, thus limiting any temporary detriment of senescent cells and
their SASP. On the other hand, it would limit the chance to incur serious adverse effects due to
elimination of beneficial senescence. However, the time needed for senescent cells to
reaccumulate after a cycle of clearance is not known, and this might well be dependent on the
age of the individual. Moreover, it remains to be established if subsets of senescent cells might
788 Trends in Cell Biology, October 2020, Vol. 30, No. 10
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develop resistance to senotherapies and become even more detrimental, a phenomenon com-
monly observed in cancer cells that acquire resistance to cancer therapies.

Last, it remains debatable whether senotherapies represent the ‘fountain of youth’. Mouse exper-
iments suggest that the sole removal of senescent cells helps to delay age-related phenotypes
and significantly improve health- and lifespan, but with only a partial rejuvenation effect. The
achievement of full anti-aging potential should take into account the combination of senotherapy
with additional strategies such as stem cell transplantation or tissue reprogramming. Thus, in par-
allel to evaluate the tolerability and efficacy of senotherapeutic approaches, more research should
be dedicated to combining multiple approaches, at least in preclinical settings.
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