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1  |  INTRODUC TION

Cyclin-dependent kinase (CDK)4/6 inhibitor p16INK4a (from now on 
referred to as p16) levels gradually increase with age in multiple tis-
sues and organisms (Herbig et al., 2006; Liu et al., 2009; Melk et al., 
2004; Yousefzadeh et al., 2020). p16High cells actively contribute to 
aging and age-associated dysfunctions by restricting the regenera-
tive potential of the tissue (Martin et al., 2014) and promoting chronic 
inflammation (Sanada et al., 2018). Genetic or pharmacological 

ablation of p16High cells is able to increase health- and lifespan in 
mice (Baker et al., 2016; Xu et al., 2018). p16 expression is a com-
mon feature of cellular senescence (Liu et al., 2019), a state of sta-
ble and generally irreversible growth arrest originally described as 
a key process regulating cellular and organismal aging (Hayflick & 
Moorhead, 1961). Senescent cells are characterized by various 
structural changes, including misshaped nuclei, enhanced lysosomal 
content and phagocytic activity, altered mitochondria morphology, 
and changed plasma membrane composition (Hernandez-Segura 
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Abstract
Cells expressing high levels of the cyclin-dependent kinase (CDK)4/6 inhibitor p16 
(p16High) accumulate in aging tissues and promote multiple age-related pathologies, 
including neurodegeneration. Here, we show that the number of p16High cells is signif-
icantly increased in the central nervous system (CNS) of 2-year-old mice. Bulk RNAseq 
indicated that genes expressed by p16High cells were associated with inflammation 
and phagocytosis. Single-cell RNAseq of brain cells indicated p16High cells were pri-
marily microglia, and their accumulation was confirmed in brains of aged humans. 
Interestingly, we identified two distinct subpopulations of p16High microglia in the 
mouse brain, with one being age-associated and one present in young animals. Both 
p16High clusters significantly differed from previously described disease-associated 
microglia and expressed only a partial senescence signature. Taken together, our study 
provides evidence for the existence of two p16-expressing microglia populations, one 
accumulating with age and another already present in youth that could positively and 
negatively contribute to brain homeostasis, function, and disease.
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et al., 2018). In addition, senescent cells acquire a pro-inflammatory 
phenotype by releasing cytokines and chemokines (a phenotype 
collectively defined as the SASP—senescence-associated secretory 
phenotype) (Gorgoulis et al., 2019). Virtually, all cells can up-regulate 
p16  levels, but this induction is not always reflected by a fully se-
nescent state. For example, p16 expression is significantly increased 
in aged macrophages (Hall et al., 2016), but p16 overexpression can 
also be observed in young macrophages responding to physiological 
stimuli (Hall et al.,l., 2017), (Behmoaras & Gil, 2021).

Aging leads to a reduction in brain volume and cognition (Peters, 
2006) and is the main risk factor for dementia and neurodegenera-
tion (Wyss-Coray, 2016). Aging and neurodegenerative conditions 
induce a common gene expression signature in microglia, the res-
ident immune cells of the CNS (Galatro et al., 2017). Microglia ex-
hibit a hypersensitive and pro-inflammatory phenotype, known as 
priming, in particular during aging and neurodegeneration (Norden 
& Godbout, 2013; Perry & Holmes, 2014; Raj et al., 2014). These 
primed microglia exert an increased inflammatory response and 
thereby alter CNS function (Norden & Godbout, 2013). In addition 
to primed immune cells, the accumulation of pro-inflammatory se-
nescent cells in the CNS may also predispose elderly to neurodegen-
erative diseases or aggravate disease etiology (Kritsilis et al., 2018). 
In the CNS, p16 expression increases during natural aging and in 
brains affected by pathologies such as Parkinson's disease (PD), mul-
tiple sclerosis (MS), and Alzheimer's disease (AD) (Martin-Ruiz et al., 
2020; Nicaiseet al., 2019; Zhang et al., 2019). Removal of p16High 
cells ameliorates the progression of neurodegeneration in amyloid 
and tau AD mouse models and in mice exposed to the neurotoxin 
paraquat (Bussian et al., 2018; Chinta et al., 2018; Zhang et al., 2019). 
In a neurodegenerative context, different cell types become p16High 
and influence disease progression. A recent study has attempted to 
identify senescent cell types naturally occurring in the murine aging 
brain using single-cell transcriptomic profiling, and identified an en-
richment of p16High cells in microglia and OPCs (Ogrodnik et al.,l., 
2021). However, a limitation of single-cell RNA sequencing (scRNA-
seq) is its ability to detect low abundant transcripts, which is the 
case of the p16 transcript. Here, we aimed to identify p16High cell 
populations in the aging brain by using a transgenic mouse model 
that allows for the isolation of cells expressing p16 at the protein 
level, and then perform validation of the findings in wild-type mice 
and humans.

2  |  RESULTS

2.1  |  RFPHigh cells expressing inflammatory and 
phagocytosis-related genes accumulate in the aging 
brain of p16-3MR mice

The p16-3MR mouse contains a monomeric red fluorescent protein 
(mRFP) fused to Renilla Luciferase and a truncated herpes simplex 
virus (HSV)-1 thymidine kinase (tTK), under control of the p16 pro-
moter (Demaria et al., 2014). In order to evaluate whether the levels 

of the 3MR transgene and the number of 3MRHigh cells increase 
in the brain with age, we measured RFP signal and percentage of 
cells expressing high levels of RFP in 7- to 12-week (defined young) 
and 105- to 116-week (defined old) mice by flow cytometry (Figure 
S1a). The mean mRFP intensity was significantly higher in old mice 
(Figure 1a), and the percentage of cells expressing high levels of RFP 
(RFPHigh) cells increased >sevenfold with aging, from ~0.2% in young 
to ~1.5% in old mouse brains (Figure 1b). Importantly, the purified 
RFPHigh population was enriched in cells expressing high levels of the 
p16 transcript (Figure S1b).

We then isolated RFPLow and RFPHigh cells from aged brains 
and generated gene expression profiles of both populations using 
bulk RNA sequencing (RNAseq). Principal component analysis 
(PCA) showed significant transcriptional differences between the 
RFPLow and RFPHigh populations as indicated by the first princi-
pal component (Figure 1c). Differential gene expression analysis 
revealed 1459 differentially expressed genes between the two 
populations (Figure 1d). Among the most enriched genes in the 
RFPHigh samples (Table S1) were Cass4 and Apba2 (or Mint2), which 
are involved in amyloid synthesis and AD (Beck et al., 2014; Ho 
et al., 2008) and genes associated with macrophage activation, like 
Akr1b3, Angptl7, and Ticam2 (Qian et al., 2016; Ramana et al., 2006; 
Seya et al., 2005).

To determine whether gene networks in RFPHigh samples as-
sociated with specific biological or cellular functions, a weighted 
gene correlation network analysis (WGCNA) (Langfelder & Horvath, 
2008) was performed, resulting in branches, or modules, of highly 
correlating genes (Figure S1c; Table S2). One of these modules (the 
“blue” module), involved in phagocytosis and cytokine production, 
was significantly enriched in the RFPHigh samples, as reflected by 
the Module Eigengene, or first principal component, of the module 
(Figure 1e; Figure S1d-h). These data suggest that RFPHigh cells ac-
cumulate in the aging brain and are enriched in expression of genes 
associated with inflammation and phagocytosis pathways.

2.2  |  Single-cell transcriptomic profiling 
demonstrates accumulation of RFPHigh microglia with 
aging in p16-3MR mice

To further characterize the phenotype of the RFPHigh cell population 
in the aged mouse CNS, we compared scRNAseq profiles of purified 
RFPHigh cells to unsorted CNS cell samples (Figure S2a-d; Table S3). 
We identified 14 clusters in the dataset, using unsupervised, graph-
based clustering analysis where each cluster corresponds to a dis-
tinct cell type (Figure 2a). The cell types were identified based on the 
expression of well-known cell type marker genes: P2ry12, Cx3cr1, 
and Tgfbr1 for microglia; Cldn5 for endothelial cells; Gfap, Aqp4, and 
Atp1b2 for astrocytes; Grid2 for Purkinje neurons; Npy and Fabp7 
for glial restricted progenitors (GRP); Cd3g for T/NK cells; H2-Aa for 
monocytes; F13a1 for CNS-associated macrophages (CAMs); Pdgfrb 
for mural cells; Acta2 for neutrophils; Map1b for neurons; Dcn and 
Col1a1 for fibroblasts; Olig1, Mobp, and Plp1 for oligodendrocytes; 
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Ms4a1 for B cells; Ttr for unidentified population 1 (unknown 1); and 
Ak7 for unidentified population 2 (unknown 2) (Figure 2b; Table S4). 
Next, for the total viable and the RFPHigh populations, the distribu-
tion of cell types within each sample was compared. Microglia, as-
trocytes, and endothelial cells were the most abundant cell types 
obtained with our isolation method (total viable population) from 
aged mouse brains, while other cell types such as neurons and 
oligodendrocytes were less abundant, and most likely underrepre-
sented compared to their normal physiological distribution in the 
CNS (Valério-Gomes et al., 2018). Strikingly, the RFPHigh sample was 
almost exclusively comprised of microglia (94.6%) and some glial re-
stricted progenitors (2.6%) (Figure 2c and d).

The scRNAseq data confirmed that microglia expressed Cdkn2a, 
the genomic locus containing p16, more abundantly compared 
to other cell types in the CNS (Figure 2e). To investigate whether 
microglia showed additional markers of cellular senescence, the 
expression levels of a list of 162  senescence-associated genes in 
each cell type were evaluated (Table S5). These genes were variably 
expressed and not abundantly present in the microglia population 
(Figure 2f). These data suggest that RFPHigh microglia accumulate in 

the aging brain of p16-3MR mice and that their transcriptional pro-
file differs from a classical senescence-associated gene signature.

2.3  |  Microglia are enriched in p16 in the brains of 
wild-type mice and humans

To confirm the presence of RFPHigh microglia in aged brains, we 
used different methods. First, from the bulk RNAseq list, we in-
vestigated the expression level of cell type-specific genes in the 
RFPHigh fraction: Hexb, Cxcr1, P2ry12, and Tmem119 for microglia; 
Aqp4 and Gfap for astrocytes; Cldn5 and Vcan for endothelial cells; 
Rbfox3 for neurons; F13a1 for CNS-associated macrophages; Plp1 for 
oligodendrocytes; and Pdgfra for oligodendrocyte progenitor cells 
and fibroblasts (Figure 3a). The expression level of microglia genes 
was consistently higher in the RFPHigh samples, while in the RFPLow 
samples, endothelial cell, oligodendrocyte, and oligodendrocyte 
progenitor cell markers were more abundantly expressed. Second, 
we deconvoluted transcriptomes of the bulk RFPHigh samples with 
CIBERSORT, using our single-cell data as the reference matrix (Table 

F I G U R E  1 p16-RFP expression is increased in the brain of aged p16-3MR mice and abundantly express inflammatory and microglia genes. 
(a) Mean fluorescent RFP intensity of all viable cells in young compared to old brains. ****p<0,0001. (b) Percentage of viable cells positive for 
RFP in young mouse brains compared to old. ****p<0,0001. (c) PCA plot of bulk sequenced RFPLow and RFPHigh cells from old mouse brains. 
(d) Heatmap of all differentially expressed gene between the RFPLow and RFPHigh samples. E: Expression and gene-ontology analysis of a 
WGCNA module enriched in RFPHigh samples

(a) (b) (d)

(e)
(c)
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(a)
(c)

(f)

(b)

(d)

(e)
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S4). Again, a pattern of enrichment for microglia in the RFPHigh cell 
population was observed (Figure 3b).

To validate the correlation between p16 and RFP positivity in a 
non-transgenic background, we measured p16  levels in wild-type 
animals. We isolated microglia, astrocytes, and non-microglia/
non-astrocyte (defined as “the rest”) cells from the brain of young 
and old wild-type C57BL/6  mouse brains and evaluated the p16 
transcript levels of the isolated populations. Only microglia of old 
mice revealed a significant p16 upregulation, while no significant 
differences between young and old mice were detected neither in 
astrocytes, a cell population that was minimally represented in the 
RFPHigh cells isolated from aged p16-3MR mice, nor in other mixed 
cell types mainly consisting of endothelial cells (Figure 3c).

Next, we evaluated the level of p16 expression in human mi-
croglia and cortical CNS tissue (Galatro et al., 2017). Strikingly, we 
measured a significant enrichment for CDKN2A, the genomic locus 
containing p16, in the microglia population compared to the total 
brain samples (Figure 3d). In addition, we determined the expression 
levels of CDKN2A in a single-nucleus RNA sequencing data set of 
human AD cases and healthy donors (Gerrits et al., 2021). Also in 
this dataset, CDKN2A was most abundantly expressed by microglia 
(Figure 3e). Interestingly, lymphocytes and oligodendrocytes, un-
derrepresented in our mouse scRNAseq, also expressed CDKN2A in 
human brains. Altogether, these data confirm that both in the mouse 
and in the human aged brain, p16High cells are mostly present in the 
microglia population.

2.4  |  RFPHigh cells cluster in two distinct and 
previously unreported microglia populations

Recent reports based on single-cell transcriptomes identified 
context-dependent microglia subtypes (Masuda et al., 2020; 
Sierksma et al., 2020). Subclustering analysis of the entire microglia 
population from our single-cell dataset (RFPHigh and unpurified) re-
vealed 5 distinct subpopulations: 3 previously described—a popu-
lation which surveils the surroundings and maintains homeostasis 
through clearance of cellular debris, called homeostatic (HOM); a 
more reactive population, which acquires pro-inflammatory and 
antigen-presenting properties, called disease-associated micro-
glia (DAM); and activated microglia with high interferon signaling 
(IFN)—and 2 additional clusters, named unknown microglia clusters 
1 and 2 (UM1 and UM2), which segregated from the known clus-
ters and were almost exclusively derived from the RFPHigh samples 
(Figure 4a; Figure S3a). The HOM cluster was depleted in the RFPHigh 
microglia, while DAM and IFN clusters were equally present in 
both RFPHigh and RFPLow populations. Differential gene expression 

analysis revealed a clear distinction of the RFPHigh microglia from 
the total viable population (Figure 4b), even if the expression of se-
lected senescence-associated genes was not specifically enriched in 
the UM1 and UM2 clusters, but seems to be slightly increased in the 
DAM cluster (Figure 4c; Figure S3d). Single-cell regulatory network 
inference and clustering (SCENIC) analysis identified 43 gene net-
works differentially expressed between RFPHigh and total microglia. 
Interestingly, expression of genes regulated by Ets2, a transcription 
factor that positively regulates p16 expression (Kotake et al., 2015), 
was enriched in RFPHigh microglia (Figure 4d; Figure S3b).

We then investigated the predicted functions of genes upregu-
lated in the RFPHigh microglia. In line with our bulk RNAseq results, 
two AD risk genes were upregulated in the RFPHigh microglia. Gsap 
selectively increases amyloid-beta production (He et al., 2010), 
a protein that is aggregated in AD and inositol polyphosphate-
5-phosphatase D (Inpp5d) is suggested to contribute to AD in a 
non-amyloid-beta-dependent fashion (Efthymiou & Goate, 2017). 
Additionally, we found genes involved in macrophage motility and 
myelination. Plxnb2 has been shown to negatively regulate cell motil-
ity (Roney et al., 2011), while Kif13b regulates myelination in the CNS 
(Noseda et al., 2016) (Table S4). In addition, we examined the genes 
upregulated in each UM cluster. Gene ontology analysis for genes 
enriched in the UM1  cluster showed an enrichment for genes in-
volved in the ERK/MAPK pathways (Figure 4e) suggested to underlie 
CNS inflammation (Kaminska et al., 2009). Genes highly expressed 
in UM2 microglia were associated with cell cycle response and Rho 
GTPase signaling (Figure 4f), a pathway necessary for process mo-
tility, which is important for scanning of the parenchyma (Neubrand 
et al., 2014).

Finally, we compared the gene expression profile of the RFPHigh 
microglia to previously reported disease- and aging-associated mi-
croglia profiles (Table S5). While both the DAM and the IFN clusters 
significantly overlap with previously reported profiles, none of the 
investigated gene sets was significantly enriched in our UM1 and 
UM2  clusters (Figure S3c). Interestingly, when we looked at the 
expression levels of UM1 and UM2 cluster marker genes in aging 
wild-type mice from the dataset of Zhang et al. 2020, we observed 
that UM1  cluster markers were expressed in microglia at all ages 
albeit lower at 19  months, while the expression of UM2  cluster 
marker genes progressively increased with age in these wild-type 
mice (Figure 4g). In summary, these data show that RFPHigh microglia 
cluster in two distinct subpopulations with previously unreported 
gene signatures which we named UM1 and UM2. UM1 negatively 
correlates with age and is characterized by expression of inflamma-
tory genes. In contrast, UM2 is age-associated and characterized by 
differential expression of genes involved in cell cycle regulation and 
cell motility.

F I G U R E  2 RFPHigh cells are highly enriched for microglia. (a) UMAP depicting mouse CNS with cluster annotations based on cell types. (b) 
Heatmap showing the expression of cell type markers in each cluster. (c) Barplot of cluster distribution of total viable cells and RFPHigh cells. 
(d) Barplot showing the percentage of RFPHigh cells for each cell type. (e) Cdkn2a plotted in UMAP of all sequenced single cells. (f) Dotplot 
showing the expression of senescence markers in each cluster
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3  |  DISCUSSION

Microglia, tissue-resident macrophages of the CNS, is a heteroge-
neous cell population that change over the course of an organism 
lifespan. Microglia heterogeneity decreases with age, but several 
states—for example chemokine-enriched inflammatory microglia—
remain unchanged or increase in aged brains (Hammond et al., 2019). 
Moreover, microglia are reported to age in a regional-dependent 
manner (Grabert et al., 2016). However, there is still little under-
standing of the phenotypical characteristics of microglia subpopu-
lations in the aged brain. The current study reveals two previously 
unreported p16-expressing microglia subpopulations, one with a 
quite stable expression across different life stages and one which 
accumulation significantly increases with age.

Elevated p16 expression is a marker of cellular senescence and 
has been used to identify the accumulation of senescent astrocytes 
(Bhat et al., 2012; Chinta et al., 2018; Yabluchanskiy et al., 2020), 
oligodendrocyte progenitor cells (Nicaise et al., 2019; Zhang et al., 
2019), and neurons in the human aging brain (Kang et al., 2015) and 
in mouse models of neurodegeneration. Moreover, recent data indi-
cated that microglia accumulate p16High cells in aged mouse brains 
(Ogrodnik et al., 2021).

In this study, using both transgenic and wild-type mice, and var-
ious publicly available mouse and human transcriptomic datasets, 
we identified two distinct subpopulations of p16High microglia, one 
constantly present and one age-associated, that did not express a 
classical senescence-associated gen signature. Absence of a senes-
cence profiling is in line with a previous study showing that while 
murine microglia in vitro show markers of replicative senescence, the 
microglia of aged mice express higher levels of p16 but not other 
typical senescence-associated changes (Stojiljkovic et al., 2019).

Distinct transcriptional changes in each cell population were 
found during single-cell sequencing of the aged murine brain 
(Ximerakis et al., 2019), indicating that each cell type ages differ-
ently. In our single-cell study, only astrocytes, endothelial cells, and 
microglia were represented in large quantities, while other cell types 
were underrepresented due to our cold protease isolation proce-
dure. Since we also identified higher expression of CDKN2A in lym-
phocytes and oligodendrocytes by analyzing a dataset derived from 
RNAseq of single nuclei isolated from human brains (Gerrits et al., 
2021), it remains to be seen whether other less represented popula-
tions also express p16 with age.

Our data suggest a clear separation of the p16High microglia 
from other microglia populations and the existence of two distinct 
subsets—one expressed across the entire lifespan and the other age-
associated. A subset of p16High microglia may be part of a homeo-
static mechanism aimed at reducing damage propagation, via cell 
cycle arrest and improved phagocytic properties, and at promoting 

immune surveillance, via activation of specific secretory and pro-
inflammatory phenotypes. On the other side, the accumulation of 
a subset of p16High cells with age may represent the byproduct of 
excessive damage and reduced clearance capacity, which could con-
tribute to detriment accumulation and loss of tissue homeostasis. 
Future studies need to address this issue by evaluating the effects of 
specifically eliminating specific p16High microglia subsets, and to fur-
ther characterize the presence and function of these subsets in the 
human brain. It will also be important to evaluate whether current 
senolytic approaches are eliminating these p16High microglia sub-
sets, and the balance between benefits and toxicities of removing 
such populations.

4  |  MATERIAL S AND METHODS

4.1  |  Mice

p16–3MR mice with a C57BL/6 background or wild-type C57BL/6 
were used for all experiments (Demaria et al., 2014). Young mice 
were between 7 and 12 weeks of age, and old mice were between 
105 and 116 weeks of age. The young mice were a mix of males and 
females (n=5), male old mice were used for bulk sequencing (n=5), 
and female mice were used for single-cell sequencing (n=4). Young, 
18 weeks of age, (n=3) and old, 101 and 104 weeks of age, (n=3) 
wild-type mice were used for the isolation of astrocytes, microglia, 
and rest cells. Mice were raised on a 12-hr light/dark cycle with food 
and water available ad libitum and were individually housed. All ex-
periments were performed in the Central Animal Facility (CDP) of 
the UMCG, with protocol (15339–02–001) approved by the Animal 
Care and Use Committee (DEC) of the University of Groningen.

4.2  |  Cell isolation from mouse brain tissue

Cells were isolated from adult mouse brain using an enzymatic proto-
col at 4℃. The brains were isolated and dissociated by three rounds of 
GentleMACS (m_brain_01, m_brain_02, and m_brain_03) in enzyme 
mix of 15 mg/ml Protease (Sigma P5380), 1 mM L-cysteine hydro-
chloride (Sigma C7477), and 0.5 µg/µl DNase (Roche 10104159001) 
with 10 min incubation in the mix on ice in between GentleMACS 
programs. The homogenized brain samples were passed through 
a 100 μM cell strainer to obtain a single-cell suspension. The cells 
were centrifuged at 300 rcf for 10 min at 4℃, and the pellet was 
resuspended in 24% Percoll gradient buffer. 3 mL dPBS was pipetted 
onto the gradient buffer, and myelin was removed by centrifuging 
at 950 rcf for 20 min at 4℃. The cell pellets were incubated with 
DAPI and Draq5. Viable cells were FACS sorted as DAPInegDraq5pos 

F I G U R E  3 Increased expression of p16 in mouse and human microglia. (a) Gene expression of cell marker genes in RFPLow compared 
to RFPHigh mouse samples. (b) Barplot showing the distribution of cells types in the mouse CNS bulk dataset after deconvolution. (c) p16 
expression measured by qPCR in cells isolated from young and old mouse brains. ****p<0,0001. (d) CCKN2A expression in human microglia 
and total cortical tissue (from Galatro et al., 2017). ****p<0,0001E: UMAP depicting CDKN2A expression in 450,000 CNS cell nuclei (Gerrits 
et al. 2021)
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events. RFPHigh and RFPLow bulk samples were sorted from individual 
mice, but for the single-cell sequencing, RFPHigh (21,500) and total 
viable cells (45,000) from four mice were combined each into one 
lane of a 10X Genomics Chromium chip.

For the isolation of astrocytes, microglia, and rest cells, cell 
pellets were incubated with the antibodies CD11b-BV421 (clone 
M1/70, Biolegend, San Diego, CA, USA), CD45-FITC (clone 30-F11, 
Biolegend, San Diego, CA, USA), CD49d-PE (clone R1-2, Miltenyi 
Biotec), Acsa2-FITC (clone REA969, Miltenyi Biotec), PI, and Draq5. 
Microglia were FACS sorted as PIneg Draq5pos CD11bhigh CD45int 
CD49dneg events. Astrocytes were FACS sorted as PIneg Draq5pos 
CD11bneg CD45neg Acsa2pos events and rest cells as PIneg Draq5pos 
CD11bneg CD45neg Acsa2neg events. Bulk samples were sorted from 
individual mice.

4.3  |  FACS analysis

Flowjo V.10 was used to analyze the mean, median RFP expression, 
number of RFP positive cells, and viability of cells. Unpaired t tests 
were used to compare the mean, median, and number of positive 
cells. Paired t test was used to compare viability.

4.4  |  Real-Time PCR

Total RNA was prepared using the AllPrep DNA/RNA Micro Kit 
(Qiagen, 80284). RNA was reverse transcribed into cDNA using a 
kit (Applied Biosystems). Quantitative RT-PCR (qRT-PCR) reac-
tions were performed as described (Demaria et al., 2010) using the 
Universal Probe Library system (Roche). Primer used:

mp16 #91 -FAATCTCCGCGAGGAAAGC -RGTCTGCAGCG​
GACTCCAT.

mHprt1 #62 -FATCACATTGTGGCCCTCTG -RGTCATGG​
GAATGGATCTATCACT.

mHmbs #91 -FAGAAAAGTGCCGTGGGAAC -RTGTTGA​
GGTTTCCCCGAAT.

4.5  |  Bulk RNAseq library 
construction and sequencing

RNA was isolated from cell pellets with the AllPrep DNA/RNA Micro 
Kit (Qiagen, 80284). RNA concentrations were measured on a Qubit 
using a HS RNA kit. 2,5 ng of the samples was used for library prepa-
ration with the Lexogen QuantSeq 3’ mRNA-Seq Library Prep Kit 

(FWD) from Illumina. All libraries were pooled equimolarly and se-
quenced on a NextSeq 500 at the sequencing facility in the UMCG.

4.6  |  scRNAseq library 
construction and sequencing

The single-cell cDNA libraries were constructed using the Chromium 
Single Cell 3’ Reagents Kit v3 and corresponding user guide (10x 
Genomics). All samples were pooled in equimolar ratios and se-
quenced on a NextSeq 500 at the sequencing facility in the UMCG.

4.7  |  Gene sets from literature

To compare our microglia clusters with reported microglia phe-
notypes in literature, several gene sets were downloaded. From 
(Sierksma et al., 2020), EV7 was downloaded and genes with a p_val_
adj <0.05 and logFC >0.15 were selected (304 genes) and from EV6 
the CPM gene set (521 genes). From (Hammond et al., 2019), table 
S1 was downloaded and marker genes from clusters OA2 and OA3 
were selected (136 and 37 genes, respectively). From (Keren-Shaul 
et al., 2017), table S2 was downloaded and upregulated genes of 
“Microglia3” with a p_val_adj <0.05 were selected (469 genes). From 
(Butovsky & Weiner, 2018), upregulated genes listed in Figure 2 were 
used (29 genes). From (Gerrits et al., 2020), genes from table S4 with 
a p_val_adj <0.05 and logFC >0.15 were selected (188 genes). From 
Galatro et al. (2017), Voom Normalized counts were downloaded 
from GEO. From Gerrits et al. 2021, the exact same analyzed data 
objects as reported in the paper were used as these were generated 
by ourselves.

4.8  |  Bulk RNAseq data analysis

Data preprocessing was performed with the Lexogen Quantseq 2.3.1 
FWD UMI pipeline on the BlueBee Genomics Platform (1.10.18). 
Count files were loaded into R, and DAFS filtering was performed 
to remove lowly expressed genes (George & Chang, 2014). A nega-
tive binomial generalized log-linear model was used to model gene 
expression levels, as implemented in edgeR, adjusted for mouse 
since the RFPLow and RFPHigh cells were obtained from the same 
mice and differentially expressed genes were determined using a 
likelihood ratio test (Robinson et al., 2010). Thresholds were set at 
abs(logFC) >1 and p < 0.05. Principal component analysis was per-
formed on logCPM transformed counts. Visualizations were made 

F I G U R E  4 p16High microglia express genes associated with inflammation, cell cycle response, and cell motility. (a) UMAP plots where 
colors indicate the different clusters within all the sequenced microglia cells. DAM=damage-associated microglia. (b) Volcano plot depicting 
differential expressed genes between the RFPHigh microglia and total viable microglia. (c) Violin plot showing the expression of senescence 
genes in each microglia cluster. (d) Heatmap showing the differentially expressed regulons in the SCENIC analysis between all RFPHigh and 
total viable microglia. (e) GOs significantly enriched in the p16-UM1 cluster. (f) GOs significantly enriched in the p16-UM2 cluster. (g) Violin 
plot depicting the expression of UM1 and UM2 cluster markers with age in wild-type mice of the dataset from Zhang et al. (Zhang et al., 
2020)
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with the CRAN package “ggplot2.” Heatmaps were made with the 
CRAN package “gplots,” and rows and columns were clustered using 
hierarchical clustering with the ward.D2 method on Pearson's cor-
relations. For WGCNA analysis, VST-transformed counts obtained 
from DESeq2 were used as input (Langfelder & Horvath, 2008; Love 
et al., 2014). Signed WGCNA was performed using biweight mid-
correlations, and the max number of excluded outliers was restricted 
to 10%. Since we were dealing with binary data (i.e., two experimen-
tal groups), the robust treatment for the y variable of the biweight 
mid-correlation was turned off (Langfelder & Horvath, 2012). Gene 
ontology analysis was performed on significantly differentially ex-
pressed genes (p < 0.05 and logFC >0.15) using “clusterProfiler” 
with a p- and q-value cutoff of 0.05.

4.9  |  scRNAseq data analysis

Raw reads were processed using Cell Ranger 3.0.0 with default set-
tings and aligned to the mouse mm10  genome. Barcode filtering 
was performed with DropletUtils with a threshold on >250 UMIs. 
Counts from cellular barcodes were then extracted from the raw 
output count matrix from Cell ranger. Cells with a mitochondrial con-
tent >10% were removed from the dataset. Counts from the differ-
ent sample groups were merged into one using the “Merge” function 
from Seurat (v3). Then, the data were SCTransformed with regres-
sion on mitochondrial and ribosomal content, and subsequently, 
PCA, UMAP, finding neighbors, and clustering were performed as 
implemented by Seurat (Hafemeister & Satija, 2019). For differen-
tial gene expression analysis, raw counts were normalized using 
the “NormalizeData” function; then, DE genes were identified with 
MAST. Geneset scores were calculated using the “AddModuleScore” 
function. Average gene expression per cluster was calculated using 
the “AverageExpression” function. Median of expressed genes that 
were mitochondrial per cell: 2.2%; ribosomal: 5.6%; and median 
number of genes detected per cell: 755.

Regulatory gene network (regulon) analysis was performed using 
SCENIC; normalized counts from Seurat were used as input (Aibar 
et al., 2017). Only genes with more than 3 counts and present in 
at least 0.5% of all cells were included. GENIE3 and SCENIC were 
used with default settings (Huynh-Thu et al., 2010; Aibar et al., 
2017). Enrichment of gene sets and regulons in our scRNAseq data 
was quantified using AUCell. AUC values are plotted as an average 
per group. Regulons with a median AUC <0.01 were excluded in the 
downstream analysis.

From Zhang et al. (2020), the raw count matrices of all mice were 
downloaded and raw reads were processed using Cell Ranger 3.0.0 
with default settings and the pre-mRNA package. From the bam file, 
exonic reads and intronic reads mapping in the same direction as the 
mRNA were counted per barcode with Abacus in order to distinguish 
barcodes containing nuclear RNA from ambient and cytoplasmic 
RNA (Xi et al., 2020). The counts corresponding to these barcodes 
were extracted from the raw count matrix generated by Cell Ranger 
and loaded in R with Seurat (3.0.3). Nuclei with a mitochondrial 

content >5% were removed from the dataset. Count matrices of all 
mice were merged. The data were normalized for library size, by a 
scale factor of 10,000 and log-transformed. Scrublet was used to 
identify and remove doublets (Wolock et al., 2019) (Wolock et al., 
2019). Highly variable features (HVGs) were determined using the 
VST method. The data were scaled and heterogeneity associated 
with number of UMIs and mitochondrial content was regressed out 
and the data were clustered using the graph-based clustering ap-
proach implemented in Seurat. The microglia cluster was identified 
based on expression of P2ry12, Csf1r, and Cx3cr1. Then, only WT 
mice were used for further analysis. Geneset scores were calculated 
using the “AddModuleScore” function from Seurat.
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