Research Groups

Genomic Instability in Development and Disease

Aneuploidy, an abnormal number of chromosomes, is a key feature of cancer cells and is furthermore associated with aging-related pathologies such as Alzheimer’s disease.

  • People
  • Info
  • Publications
  • Alumni
  • Floris Foijer Visit

    Group Leader of the Laboratory of Genomic Instability in Development and Disease

    Research fields

    Mouse models for aneuploidy, spindle checkpoint, chromosomal instability, CIN, aneuploidy and cancer, aneuploidy and ageing

    Postdoctoral Fellows
    Sahil Gupta
    Maria Suarez Peredo Rodriquez
    Narendra Chunduri
    PhD Students
    Andrea Tijhuis
    Catalina Gaviria Agudelo
    Christy Hong
    Laura J. Jilderda
    Othman Alhazzaa
    Soraya Wobben
    Mathilde Broekhuis
    Rene Wardenaar
  • Chromosomal instability (CIN) is a hallmark feature of cancer. CIN leads to cells with an abnormal DNA content, a state known as aneuploidy affecting >80% of all cancers. Paradoxically, in untransformed cells, CIN and aneuploidy decrease cellular fitness and lead to activation of stress pathways. This suggests that cancer cells have found ways to cope with the downsides of CIN. A better understanding of these coping strategies can lead to new therapies that target these mechanisms, and thus selectively kill the aneuploid cancer cells with fewer side effects on healthy cells.

    In the Foijer lab, we study how cells deal with chromosomal instability and the resulting aneuploidy, in vitro as well as in vivo, to better understand what discriminates an aneuploid (cancer) cell from a normal cell. Importantly, we exploit our findings to design new strategies that selectively target aneuploid cells and collaborate with clinicians to translate our findings into clinical practice.

    The work in the lab focusses on four main themes:

    1) Development of technology and in vivo models to faithfully model and quantify chromosomal instability and aneuploidy

    2) Understanding how karyotype evolution shapes the genome of cancer cells

    3) Studies of the molecular mechanisms that discriminate aneuploid (cancer) cells from normal cells

    4) Efforts to exploit our mechanistic findings to design therapies that selectively kill cancer cells that display a CIN phenotype


    • Jilderda LJ, Zhou L, Foijer F.(2021) Understanding how genetic mutations collaborate with genomic instability in cancer. Cells.  
    • Cohen-Sharir Y, McFarland JM, Abdusamad M, Marquis C, Bernhard SV, Kazachkova M, Tang H, Ippolito MR, Laue K, Zerbib J, Malaby HLH, Jones A, Stautmeister LM, Bockaj I, Wardenaar R, Lyons N, Nagaraja A, Bass AJ, Spierings DCJ, Foijer F, Beroukhim R, Santaguida S, Golub TR, Stumpff J, Storchova Z, and Ben-David U.(2021) Aneuploidy-induced cancer vulnerability to mitotic checkpoint inhibition. Nature.    
    • Schukken KM, Zhu Y, Bakker PL, Koster MH, Harkema L, Youssef SA, de Bruin A, Foijer F.(2021) Acute systemic loss of Mad2 leads to intestinal atrophy in adult mice. Scientific Reports.  
    • Sladky VC, Knapp K, Szabo TG, Braun VZ, Bongiovanni L, van den Bos H, Spierings DC, Westendorp B, Curinha A, Stojakovic T, Scharnagl H, Timelthaler G, Tsuchia K, Pinter M, Semmler G, Foijer F, de Bruin A, Reiberger T, Rohr-Udilova N, Villunger A.(2020) PIDDosome-induced p53-dependent ploidy restriction facilitates hepatocarcinogenesis. EMBO Rep.  
    • Shoshani O, Bakker B, WangY , Kim DH, Maldonado M, Demarest MA, Artates J, Zhengyu O, Mark A, Wardenaar R, Sasik R, Spierings DCJ, Vitre B, Fisch K, Foijer F, and Cleveland DW.(2020) Transient genomic instability drives tumorigenesis through accelerated clonal evolution. BioRxiv.  
    • Phan TP, Maryniak AL, Boatwright CA, Lee J, Atkins A, Tijhuis A, Spierings DC, Bazzi H, Foijer F, Jordan PW, Stracker TH, Holland AJ.(2020) Centrosome defects cause microcephaly by activating the 53BP1-USP28-TP53 mitotic surveillance pathway. EMBO Journal.    
    • Zhou L, Jilderda LJ, Foijer F.(2020) Exploiting aneuploidy-imposed stresses and coping mechanisms to battle cancer. Open Biology.
    • Saba KH, Cornmark L, Hofvander J, Magnusson L, Nilsson J, van den Bos H, Spierings DC, Foijer F, Staaf J, Brosjö O, Sumathi VP, Lam SW, Szuhai K, Bovée JV, Kovac M, Baumhoer D, Styring E, Nord KH.(2020) Loss of NF2 defines a genetic subgroup of non-FOS-rearranged osteoblastoma. Journal Pathology Clinical Research.
    • Sladky VC, Knapp K, Soratroi C, Heppke J, Eichin F, Rocamora-Reverte L, Szabo TG, Bongiovanni L, Westendorp B, Moreno E, van Liere EA, Bakker B, Spierings DCJ, Wardenaar R, Pereyra D, Starlinger P, Schultze S, Trauner M, Stojakovic T, Scharnagl H, Fava LL, Foijer F, de Bruin A, Villunger A.(2020) E2F-Family Members Engage the PIDDosome to Limit Hepatocyte Ploidy in Liver Development and Regeneration. Developmental Cell.      
    • Andersson N, Bakker B, Karlsson J, Valind A, Holmquist Mengelbier L, Spierings DCJ, Foijer F, Gisselsson D.(2020) Extensive clonal branching shapes the evolutionary history of high-risk pediatric cancers. Cancer Research.  
    • Schukken KM, Lin YC, Bakker PL, Schubert M, Preuss SF, Simon JE, van den Bos H, Storchova Z, Colomé-Tatché M, Bastians H, Spierings DC, Foijer F. (2020) Altering microtubule dynamics is synergistically toxic with spindle assembly checkpoint inhibition. Life Science alliance.
    • Sieben CJ, Jeganathan KB, Nelson GG, Sturmlechner I, Zhang C, van Deursen WH, Bakker B, Foijer F, Li H, Baker DJ, van Deursen JM.(2020) BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. Journal of Clinical Investigation.  
    • Schubert M, Colomé-Tatché M, Foijer F.(2019) Gene networks in cancer are biased by aneuploidies and sample impurities. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms.
    • Schoonen PM, Kok YP, Wierenga E, Bakker B, Foijer F, Spierings DCJ, van Vugt MATM.(2019) Premature Mitotic Entry Induced by ATR Inhibition Potentiates Olaparib Inhibition-Mediated Genomic Instability, Inflammatory Signaling, and Cytotoxicity in BRCA2-deficient Cancer Cells. Molecular Oncology.    
    • Hong C, Tijhuis AE, Foijer F.(2019) The cGAS Paradox: Contrasting Roles for cGAS-STING Pathway in Chromosomal Instability. Cells.
    • Bolhaqueiro ACF, Ponsioen B, Bakker B, Spierings DCJ, Klaasen SJ, Papaspyropoulos  A, Dutta D, Hami N, Verlaan-Klink I, van Jaarsveld RH, Lansdorp PM, van de Wetering M, Clevers H, Foijer F, Snippert HJG and Kops GJPL.(2019) Ongoing chromosomal instability and karyotype evolution in human colorectal cancer. Nature Genetics.  
    • Foijer F , Albacker LA, Bakker B, Spierings DC, Yue Y, Xie SZ, Davis S, Lutum-Jehle A, Takemoto D, Hare B, Furey B, Bronson RT, Lansdorp PM, Bradley A, Sorger PK.(2017) Deletion of the MAD2L1 spindle assembly checkpoint gene is tolerated in mouse models of acute T-cell lymphoma and hepatocellular carcinoma. eLIFE.  
    • Bakker B, Taudt A, Belderbos ME, Porubsky D, Spierings DC, de Jong TV, Halsema N, Kazemier HG, Hoekstra-Wakker K, Bradley A, de Bont ES, van den Berg A, Guryev V, Lansdorp PM, Colomé-Tatché M, Foijer F. (2016) Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies. Genome Biology.
    • van den Bos H, Spierings DC, Taudt AS, Bakker B, Porubský D, Falconer E, Novoa C, Halsema N, Kazemier HG, Hoekstra-Wakker K, Guryev V, den Dunnen WF, Foijer F, Tatché MC, Boddeke HW, Lansdorp PM. (2016) Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer’s disease neurons. Genome Biology.
    • Heijink AM, Blomen VA, Bisteau X, Degener F, Matsushita FY, Kaldis P, Foijer F, van Vugt MA. (2015) A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity. PNAS.
    • Simon JE, Bakker B, Foijer F. (2015) CINcere Modelling: What Have Mouse Models for Chromosome Instability Taught Us? Recent Results in Cancer Research.
    • Bakker B, van der Bos H, Lansdorp PM, Foijer F (2015) How to count chromosomes in a cell: An overview of current and novel technologies. Bioessays.
    • Oliveira VL, Foijer F. (2015) Better check late than never: The chromosome segregation checkpoint. Bioessays.
    • Foijer F, Xie SZ, Simon JE, Conte N, Davis S,Kregel E, Jinkers J, Bradley A and Sorger PK,(2014) Chromosome instability induced by Mps1 and p53 mutation generates aggressive lymphomas exhibiting aneuploidy-induced stress. Proceedings of the National Academy of Sciences
    • Foijer F, DiTommaso T, Donati G, Hautaviita K, Xie SZ, Heath E, Smyth I, Watt FM, Sorger PK, Bradley A. (2013) Spindle checkpoint deficiency is tolerated by murine epidermal cells but not hair follicle stem cells. PNAS.
    • Orth JD, Kohler RH, Foijer F, Sorger PK, Weissleder R, Mitchison TJ. (2011) Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. Cancer research.
    • Foijer F. (2010) CINister thoughts. Biochemical society transactions.
    • van Harn T, Foijer F, van Vugt M, Banerjee R, Yang F, Oostra A, Joenje H, te Riele H. (2010) Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes & development.
    • Vormer TL, Foijer F, Wielders CL, te Riele H. (2008) Anchorage-independent growth of pocket protein-deficient murine fibroblasts requires bypass of G2 arrest and can be accomplished by expression of TBX2. Molecular and cellular biology.
    • Foijer F, Draviam VM, Sorger PK. (2008) Studying chromosome instability in the mouse. Biochimica Biophysica Acta.
    • Foijer F, Delzenne-Goette E, Dekker M, Te Riele H. (2007) In vivo significance of the G2 restriction point. Cancer research.
    • Foijer F, Simonis M, van Vliet M, Wessels L, Kerkhoven R, Sorger PK, Te Riele H. (2007) Oncogenic pathways impinging on the G2-restriction point. Oncogene.
    • Foijer F, Te Riele H. (2006) Restriction beyond the restriction point: mitogen requirement for G2 passage. Cell division.
    • Foijer F, te Riele H. (2006) Check, double check: the G2 barrier to cancer. Cell cycle.
    • Foijer F, Wolthuis RM, Doodeman V, Medema RH, te Riele H. (2005) Mitogen requirement for cell cycle progression in the absence of pocket protein activity. Cancer cell.
    • Verlinden L, Eelen G, Beullens I, Van Camp M, Van Hummelen P, Engelen K, Van Hellemont R, Marchal K, De Moor B, Foijer F, Te Riele H, Beullens M, Bollen M, Mathieu C, Bouillon R, Verstuyf A. (2005) Characterization of the condensin component Cnap1 and protein kinase Melk as novel E2F target genes down-regulated by 1,25-dihydroxyvitamin D3. The journal of biological chemistry.
  • Klaske Schukken (Postdoc at Cold Spring Harbor Laboratories, per nu)

    Daniel Warmerdam (CRISPR expert at Amsterdam MC, Amsterdam, the Netherlands)

    Stefan Juranek (Group leader, University Clinic Bonn, Germany)

    Judith Simon (Marie-Curie-funded postdoc at Bart’s Cancer Centre, London, UK)

    Weilin Liu (Postdoc at Erasmus MC, Rotterdam, The Netherlands)

    Jorge Garcia-Martinez (Senior Researcher and Data Analyst at Life Length, Madrid, Spain)

    Yinan Zhu (Medical Advisor, Boehringer Ingelheim, Shanghai region, China)

    Bjorn Bakker (Postdoc Crick Institute London)


Share this:
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now